1,605 research outputs found
Execution Risk
Transaction costs in trading involve both risk and return. The return is associated with the cost of immediate execution and the risk is a result of price movements during a more gradual trading. The paper shows that the trade-off between risk and return in optimal execution should reflect the same risk preferences as in ordinary investment. The paper develops models of the joint optimization of positions and trades, and shows conditions under which optimal execution does not depend upon the other holdings in the portfolio. Optimal execution however may involve trades in assets other than those listed in the order; these can hedge the trading risks. The implications of the model for trading with reversals and continuations are developed. The model implies a natural measure of liquidity risk
CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles
Value at Risk has become the standard measure of market risk employed by financial institutions for both internal and regulatory purposes. Despite its conceptual simplicity, its measurement is a very challenging statistical problem and none of the methodologies developed so far give satisfactory solutions. Interpreting Value at Risk as a quantile of future portfolio values conditional on current information, we propose a new approach to quantile estimation that does not require any of the extreme assumptions invoked by existing methodologies (such as normality or i.i.d. returns). The Conditional Value at Risk or CAViaR model moves the focus of attention from the distribution of returns directly to the behavior of the quantile. Utilizing the criterion from Regression Quantiles, and postulating a variety of dynamic updating processes we propose methods based on a Genetic Algorithm to estimate the unknown parameters of CAViaR models. We propose a Dynamic Quantile Test of model adequacy that tests the hypothesis that in each period the probability of exceeding the VaR must be independent of all the past information. Applications to simulated and real data provide empirical support to our methodology and illustrate the ability of these algorithms to adapt to new risk environments.
Risk and Volatility: Econometric Models and Financial Practice
The advantage of knowing about risks is that we can change our behavior to avoid them. Of course, it is easily observed that to avoid all risks would be impossible; it might entail no flying, no driving, no walking, eating and drinking only healthy foods and never being touched by sunshine. Even a bath could be dangerous. I could not receive this prize if I sought to avoid all risks. There are some risks we choose to take because the benefits from taking them exceed the possible costs. Optimal behavior takes risks that are worthwhile. This is the central paradigm of finance; we must take risks to achieve rewards but not all risks are equally rewarded. Both the risks and the rewards are in the future, so it is the expectation of loss that is balanced against the expectation of reward. Thus we optimize our behavior, and in particular our portfolio, to maximize rewards and minimize risks.time series;
Hedging Options in a GARCH Environment: Testing the Term Structure of Stochastic Volatility Models
This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P 500 index volatility. Volatility models are compared by their ability to hedge options positions sensitive to the term structure of volatility. Overall, the most effective hedge is a Black-Scholes (BS) delta-gamma hedge, while the BS delta-vega hedge is the least effective. The most successful volatility hedge is GARCH components delta-gamma, suggesting that the GARCH components estimate of the term structure of volatility is most accurate. The success of the BS delta-gamma hedge may be due to mispricing in the options market over the sample period.
Value at risk models in finance
The main objective of this paper is to survey and evaluate the performance of the most popular univariate VaR methodologies, paying particular attention to their underlying assumptions and to their logical flaws. In the process, we show that the Historical Simulation method and its variants can be considered as special cases of the CAViaR framework developed by Engle and Manganelli (1999). We also provide two original methodological contributions. The first one introduces the extreme value theory into the CAViaR model. The second one concerns the estimation of the expected shortfall (the expected loss, given that the return exceeded the VaR) using a regression technique. The performance of the models surveyed in the paper is evaluated using a Monte Carlo simulation. We generate data using GARCH processes with different distributions and compare the estimated quantiles to the true ones. The results show that CAViaR models perform best with heavy-tailed DGP. JEL Classification: C22, G22CAViaR, extreme value theory, Value at Risk
Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH
In this paper, we develop the theoretical and empirical properties of a new class of multi-variate GARCH models capable of estimating large time-varying covariance matrices, Dynamic Conditional Correlation Multivariate GARCH. We show that the problem of multivariate conditional variance estimation can be simplified by estimating univariate GARCH models for each asset, and then, using transformed residuals resulting from the first stage, estimating a conditional correlation estimator. The standard errors for the first stage parameters remain consistent, and only the standard errors for the correlation parameters need be modified. We use the model to estimate the conditional covariance of up to 100 assets using S&P 500 Sector Indices and Dow Jones Industrial Average stocks, and conduct specification tests of the estimator using an industry standard benchmark for volatility models. This new estimator demonstrates very strong performance especially considering ease of implementation of the estimator.
- …