1,610 research outputs found

    Vacuum field correlations and three-body Casimir-Polder potential with one excited atom

    Full text link
    The three-body Casimir-Polder potential between one excited and two ground-state atoms is evaluated. A physical model based on the dressed field correlations of vacuum fluctuations is used, generalizing a model previously introduced for three ground-state atoms. Although the three-body potential with one excited atom is already known in the literature, our model gives new insights on the nature of non-additive Casimir-Polder forces with one or more excited atoms.Comment: 9 page

    Dynamical Casimir-Polder energy between an excited and a ground-state atom

    Full text link
    We consider the Casimir-Polder interaction between two atoms, one in the ground state and the other in its excited state. The interaction is time-dependent for this system, because of the dynamical self-dressing and the spontaneous decay of the excited atom. We calculate the dynamical Casimir-Polder potential between the two atoms using an effective Hamiltonian approach. The results obtained and their physical meaning are discussed and compared with previous results based on a time-independent approach which uses a non-normalizable dressed state for the excited atom.Comment: 11 page

    Tuning the collective decay of two entangled emitters by means of a nearby surface

    Full text link
    We consider the radiative properties of a system of two identical correlated atoms interacting with the electromagnetic field in its vacuum state in the presence of a generic dielectric environment. We suppose that the two emitters are prepared in a symmetric or antisymmetric superposition of one ground state and one excited state and we evaluate the transition rate to the collective ground state, showing distinctive cooperative radiative features. Using a macroscopic quantum electrodynamics approach to describe the electromagnetic field, we first obtain an analytical expression for the decay rate of the two entangled two-level atoms in terms of the Green's tensor of the generic external environment. We then investigate the emission process when both atoms are in free space and subsequently when a perfectly reflecting mirror is present, showing how the boundary affects the physical features of the superradiant and subradiant emission by the two coupled emitters. The possibility to control and tailor radiative processes is also discussed.Comment: 11 pages, 8 figure

    Effective hamiltonians in nonrelativistic quantum electrodynamics

    Get PDF
    In this paper, we consider some second-order effective Hamiltonians describing the interaction of the quantum electromagnetic field with atoms or molecules in the nonrelativistic limit. Our procedure is valid only for off-energy-shell processes, specifically virtual processes such as those relevant for ground-state energy shifts and dispersion van der Waals and Casimir-Polder interactions, while on-energy-shell processes are excluded. These effective Hamiltonians allow for a considerable simplification of the calculation of radiative energy shifts, dispersion, and Casimir-Polder inter-actions, including in the presence of boundary conditions. They can also provide clear physical insights into the processes involved. We clarify that the form of the effective Hamiltonian depends on the field states considered, and consequently different expressions can be obtained, each of them with a well-defined range of validity and possible applications. We also apply our results to some specific cases, mainly the Lamb shift, the Casimir-Polder atom-surface interaction, and the dispersion interactions between atoms, molecules, or, in general, polarizable bodies

    Dynamical Casimir-Polder force between an excited atom and a conducting wall

    Get PDF
    We consider the dynamical atom-surface Casimir-Polder force in the nonequilibrium configuration of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom and find that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We also investigate the asymptotic behavior in time of the dynamical force and of related local field quantities, showing that the static value of the force, as obtained by a time-independent approach, is recovered for times much longer than the time scale of the atomic self-dressing but shorter than the atomic decay time. We then discuss the evolution of global quantities such as atomic and field energies and their asymptotic behavior. We also compare our results for the dynamical force on the excited atom with analogous results recently obtained for an initially bare ground-state atom. We show that new relevant features are obtained in the case of an initially excited atom, for example, much larger values of the dynamical force with respect to the static one, allowing for an easier way to single out and observe the dynamical Casimir-Polder effect

    Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect

    Full text link
    We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerated atoms, prepared in a correlated Bell-type state, and interacting with the electromagnetic field in the vacuum state, separating vacuum fluctuations and radiation reaction contributions, both in the free-space and in the presence of a perfectly reflecting plate. We show that nonthermal effects of acceleration manifest in the resonance interaction, yielding a change of the distance dependence of the resonance interaction energy. This suggests that the equivalence between temperature and acceleration does not apply to all radiative properties of accelerated atoms. To further explore this aspect, we evaluate the resonance interaction between two atoms in non inertial motion in the coaccelerated (Rindler) frame and show that in this case the assumption of an Unruh temperature for the field is not required for a complete equivalence of locally inertial and coaccelerated points of views.Comment: 8 pages, Proceedings of the Eighth International Workshop DICE 2016 Spacetime - Matter - Quantum Mechanic
    corecore