15,643 research outputs found

    Limits on Non-Linear Electrodynamics

    Get PDF
    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested

    Characterization of the Vacuum Birefringence Polarimeter at BMV: Dynamical Cavity Mirror Birefringence

    Full text link
    We present the current status and outlook of the optical characterization of the polarimeter at the Bir\'{e}fringence Magn\'etique du Vide (BMV) experiment. BMV is a polarimetric search for the QED predicted anisotropy of vacuum in the presence of external electromagnetic fields. The main challenge faced in this fundamental test is the measurement of polarization ellipticity on the order of 10−15{10^{-15}} induced in linearly polarized laser field per pass through a magnetic field having an amplitude and length B2L=100 T2m{B^{2}L=100\,\mathrm{T}^{2}\mathrm{m}}. This challenge is addressed by understanding the noise sources in precision cavity-enhanced polarimetry. In this paper we discuss the first investigation of dynamical birefringence in the signal-enhancing cavity as a result of cavity mirror motion.Comment: To appear in the 2019 CPEM special issue of IEEE Transactions on Instrumentation and Measuremen

    Atmospheric turbulence and superstatistics

    Full text link
    Nonequilibrium systems with large-scale fluctuations of a suitable system parameter are often effectively described by a superposition of two statistics, a superstatistics. Here we illustrate this concept by analysing experimental data of fluctuations in atmospheric wind velocity differences at Florence airport.Comment: 9 pages, 4 figures. New version to appear in Europhysics News (2005

    Possible Suppression of Resonant Signals for Split-UED by Mixing at the LHC?

    Full text link
    The mixing of the imaginary parts of the transition amplitudes of nearby resonances via the breakdown of the Breit-Wigner approximation has been shown to lead to potentially large modifications in the signal rates for new physics at colliders. In the case of suppression, this effect may be significant enough to lead to some new physics signatures being initially missed in searches at, e.g., the LHC. Here we explore the influence of this `width mixing' on the production of the nearly degenerate, level-2 Kaluza-Klein (KK) neutral gauge bosons present in Split-UED. We demonstrate that in this particular case large cross section modifications in the resonance region are necessarily absent and explain why this is so based on the group theoretical structure of the SM.Comment: 10 pages, 2 figures; discussion and references adde

    Optical spectroscopy of a microsized Rb vapour sample in magnetic fields up to 58 tesla

    Full text link
    We use a magnetometer probe based on the Zeeman shift of the rubidium resonant optical transition to explore the atomic magnetic response for a wide range of field values. We record optical spectra for fields from few tesla up to 60 tesla, the limit of the coil producing the magnetic field. The atomic absorption is detected by the fluorescence emissions from a very small region with a submillimiter size. We investigate a wide range of magnetic interactions from the hyperfine Paschen-Back regime to the fine one, and the transitions between them. The magnetic field measurement is based on the rubidium absorption itself. The rubidium spectroscopic constants were previously measured with high precision, except the excited state Land\'e gg-factor that we derive from the position of the absorption lines in the transition to the fine Paschen-Back regime. Our spectroscopic investigation, even if limited by the Doppler broadening of the absorption lines, measures the field with a 20 ppm uncertainty at the explored high magnetic fields. Its accuracy is limited to 75 ppm by the excited state Land\'e gg-factor determination

    Noise characterization for resonantly-enhanced polarimetric vacuum magnetic-birefringence experiments

    Full text link
    In this work we present data characterizing the sensitivity of the Bir\'{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment attempting to measure vacuum magnetic birefringence (VMB) via the measurement of an ellipticity induced in a linearly polarized laser field propagating through a birefringent region of vacuum in the presence of an external magnetic field. Correlated measurements of laser noise alongside the measurement in the main detection channel allow us to separate measured sensing noise from the inherent birefringence noise of the apparatus. To this end we model different sources of sensing noise for cavity-enhanced polarimetry experiments, such as BMV. Our goal is to determine the main sources of noise, clarifying the limiting factors of such an apparatus. We find our noise models are compatible with the measured sensitivity of BMV. In this context we compare the phase sensitivity of separate-arm interferometers to that of a polarimetry apparatus for the discussion of current and future VMB measurements

    Zero-Temperature Limit of the SUSY-breaking Complexity in Diluted Spin-Glass Models

    Full text link
    We study the SUSY-breaking complexity of the Bethe Lattice Spin-Glass in the zero temperature limit. We consider both the Gaussian and the bimodal distribution of the coupling constants. For Jij=±1J_{ij}=\pm 1 the SUSY breaking theory yields fields distributions that concentrate on integer values at low temperatures, at variance with the unbroken SUSY theory. This concentration takes place both in the quenched as well as in the simpler annealed formulation.Comment: 4 pages, 2 figure

    Large Extra Dimensions at Linear Colliders

    Get PDF
    In this talk, I first present the motivation for theories wherein extra spacetime dimensions can be compactified to have large magnitudes. In particular, I discuss the Arkani-Hamed, Dimopoulos, Dvali (ADD) scenario. I present the constraints that have been derived on these models from current experiments and the expectations from future colliders. I concentrate particularly on the possibilities of probing these extra dimensions at future linear colliders.Comment: Talk given at the Third International Workshop on Electron-Electron Interactions at TeV Energies (e- e- 99), Santa Cruz, California, 10-12 Dec 1999. 7 pages, LaTeX, style files attache
    • …
    corecore