12,436 research outputs found
Observation of the Inverse Cotton-Mouton Effect
We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a
magnetization induced in a medium by non resonant linearly polarized light
propagating in the presence of a transverse magnetic field. We present a
detailed study of the ICME in a TGG crystal showing the dependence of the
measured effect on the light intensity, the optical polarization, and on the
external magnetic field. We derive a relation between the Cotton-Mouton and
Inverse Cotton-Mouton effects that is roughly in agreement with existing
experimental data. Our results open the way to applications of the ICME in
optical devices
Noise characterization for resonantly-enhanced polarimetric vacuum magnetic-birefringence experiments
In this work we present data characterizing the sensitivity of the
Bir\'{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment
attempting to measure vacuum magnetic birefringence (VMB) via the measurement
of an ellipticity induced in a linearly polarized laser field propagating
through a birefringent region of vacuum in the presence of an external magnetic
field. Correlated measurements of laser noise alongside the measurement in the
main detection channel allow us to separate measured sensing noise from the
inherent birefringence noise of the apparatus. To this end we model different
sources of sensing noise for cavity-enhanced polarimetry experiments, such as
BMV. Our goal is to determine the main sources of noise, clarifying the
limiting factors of such an apparatus. We find our noise models are compatible
with the measured sensitivity of BMV. In this context we compare the phase
sensitivity of separate-arm interferometers to that of a polarimetry apparatus
for the discussion of current and future VMB measurements
Chemical evolution in the environment of intermediate mass young stellar objects: NGC7129--FIRS2 and LkH234
We have carried out a molecular survey of the Class 0 IM protostar NGC 7129
-- FIRS 2 (hereafter FIRS 2) and the Herbig Be star LkH 234 with the
aim of studying the chemical evolution of the envelopes of intermediate-mass
(IM) young stellar objects (YSOs). Both objects have similar luminosities (~500
Lsun) and are located in the same molecular cloud which minimizes the chemical
differences due to different stellar masses or initial cloud conditions.
Moreover, since they are located at the same distance, we have the same spatial
resolution in both objects. A total of 17 molecular species (including rarer
isotopes) have been observed in both objects and the structure of their
envelopes and outflows is determined with unprecedent detail.
Our results show that the protostellar envelopes are dispersed and warmed up
during the evolution to become a pre-main sequence star. In fact, the envelope
mass decreases by a factor >5 from FIRS 2 to LkH234, while the kinetic
temperature increases from ~13K to 28K. On the other hand, there is no
molecular outflow associated with LkH234. The molecular outflow seems
to stop before the star becomes visible. These physical changes strongly affect
the chemistry of their envelopes.
Based on our results in FIRS2 and LkH 234, we propose some abundance
ratios that can be used as chemical clocks for the envelopes of IM YSOs. The
SiO/CS, CN/N2H+, HCN/N2H+, DCO+/HCO+ and D2CO/DCO+ ratios are good diagnostics
of the protostellar evolutionary stage.Comment: 24 pages, 17 figure
Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment
We present the current status of the BMV experiment. Our apparatus is based
on an up-to-date resonant optical cavity coupled to a transverse magnetic
field. We detail our data acquisition and analysis procedure which takes into
account the symmetry properties of the raw data with respect to the orientation
of the magnetic field and the sign of the cavity birefringence. The measurement
result of the vacuum magnetic linear birefringence k_\mathrm{CM}8 \times 10^{-21}^{-2}3\sigma$ confidence level
Inverse Cotton-Mouton effect of the Vacuum and of atomic systems
In this letter we calculate the Inverse Cotton-Mouton Effect (ICME) for the
vacuum following the predictions of Quantum ElectroDynamics. We compare the
value of this effect for the vacuum with the one expected for atomic systems.
We finally show that ICME could be measured for the first time for noble gases
using state-of-the-art laser systems and for the quantum vacuum with
near-future laser facilities like ELI and HiPER, providing in particular a test
of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger
limit of 4.5x10^33 W/m^2.Comment: Submitted to EP
Ammonia observations in the LBV nebula G79.29+0.46. Discovery of a cold ring and some warm spots
The surroundings of Luminous Blue Variable (LBV) stars are excellent
laboratories to study the effects of their high UV radiation, powerful winds,
and strong ejection events onto the surrounding gas and dust. The LBV
G79.29+0.46 powered two concentric infrared rings which may interact with the
infrared dark cloud (IRDC) G79.3+0.3. The Effelsberg 100m telescope was used to
observe the NH_3 (1,1), (2,2) emission surrounding G79.29+0.46 and the IRDC. In
addition, we observed particular positions in the (3,3) transition toward the
strongest region of the IRDC. We report here the first coherent shell-like
structure of dense NH_3 gas associated with an evolved massive star. The shell,
two or three orders of magnitude more tenuous than the IRDC, is well traced in
both ammonia lines, and surrounds the ionized nebula. The NH_3 emission in the
IRDC is characterized by a low and uniform rotational temperature (T_rot ~ 10
K) and moderately high opacities in the (1,1) line. The rest of the observed
field is spotted by warm or hot zones (T_rot > 30 K) and characterized by
optically thin emission of the (1,1) line. The NH_3 abundances are about
10^{-8} in the IRDC, and 10^{-10}-10^{-9} elsewhere. The warm temperatures and
low abundances of NH_3 in the shell suggest that the gas is being heated and
photo-dissociated by the intense UV field of the LBV star. An outstanding
region is found to the south-west (SW) of the LBV star within the IRDC. The
NH_3 (3,3) emission at the centre of the SW region reveals two velocity
components tracing gas at temperatures > 30K. The northern edge of the SW
region agrees with the border of the ring nebula and a region of continuum
enhancement; here, the opacity of the (1,1) line and the NH_3 abundance do not
decrease as expected in a typical clump of an isolated cold dark cloud. This
strongly suggests some kind of interaction between the ring nebula and the
IRDC.Comment: 15 pages, 13 figures, accepted by A&A. Note the change of title with
respect to previous versio
Single Production in Collisions at the NLC
Single production in collisions at the NLC can be used to
probe the Majorana nature of the heavy neutrinos present in the Left-Right
Symmetric Model below the kinematic threshold for their direct production. For
colliders in the TeV range, typical cross sections of order
are obtained, depending on the specific choice of model parameters.
Backgrounds arising from Standard Model processes are shown to be small. This
analysis greatly extends the kinematic range of previous studies wherein the
production of an on-shell, like-sign pair of 's at the NLC was considered.Comment: 13pp, 3 figures (available on request), LaTex, SLAC-PUB-647
Low Scale Non-universal, Non-anomalous U(1)'_F in a Minimal Supersymmetric Standard Model
We propose a non-universal U(1)'_F symmetry combined with the Minimal
Supersymmetric Standard Model. All anomaly cancellation conditions are
satisfied without exotic fields other than three right-handed neutrinos.
Because our model allows all three generations of chiral superfields to have
different U(1)'_F charges, upon the breaking of the U(1)'_F symmetry at a low
scale, realistic masses and mixing angles in both the quark and lepton sectors
are obtained. In our model, neutrinos are predicted to be Dirac fermions and
their mass ordering is of the inverted hierarchy type. The U(1)'_F charges of
the chiral super-fields also naturally suppress the mu term and automatically
forbid baryon number and lepton number violating operators. While all
flavor-changing neutral current constraints in the down quark and charged
lepton sectors can be satisfied, we find that constraint from D0-D0bar turns
out to be much more stringent than the constraints from the precision
electroweak data.Comment: 21 pages, 2 figures; v2: discussion on sparticle mass spectrum
included, 27 pages, 2 figure
- âŠ