529 research outputs found

    Finite Chains with Quantum Affine Symmetries

    Full text link
    We consider an extension of the (t-U) Hubbard model taking into account new interactions between the numbers of up and down electrons. We confine ourselves to a one-dimensional open chain with L sites (4^L states) and derive the effective Hamiltonian in the strong repulsion (large U) regime. This Hamiltonian acts on 3^L states. We show that the spectrum of the latter Hamiltonian (not the degeneracies) coincides with the spectrum of the anisotropic Heisenberg chain (XXZ model) in the presence of a Z field (2^L states). The wave functions of the 3^L-state system are obtained explicitly from those of the 2^L-state system, and the degeneracies can be understood in terms of irreducible representations of U_q(\hat{sl(2)}).Comment: 31pp, Latex, CERN-TH.6935/93. To app. in Int. Jour. Mod. Phys. A. (The title of the paper is changed. This is the ONLY change. Previous title was: Hubbard-Like Models in the Infinite Repulsion Limit and Finite-Dimensional Representations of the Affine Algebra U_q(\hat{sl(2)}).

    THE PATHOLOGIC ANATOMY OF DEUTERIUM INTOXICATION

    Full text link

    A refined Razumov-Stroganov conjecture II

    Full text link
    We extend a previous conjecture [cond-mat/0407477] relating the Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to refined numbers of alternating sign matrices. By considering the O(1) loop model on a semi-infinite cylinder with dislocations, we obtain the generating function for alternating sign matrices with prescribed positions of 1's on their top and bottom rows. This seems to indicate a deep correspondence between observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf macro

    Different facets of the raise and peel model

    Full text link
    The raise and peel model is a one-dimensional stochastic model of a fluctuating interface with nonlocal interactions. This is an interesting physical model. It's phase diagram has a massive phase and a gapless phase with varying critical exponents. At the phase transition point, the model exhibits conformal invariance which is a space-time symmetry. Also at this point the model has several other facets which are the connections to associative algebras, two-dimensional fully packed loop models and combinatorics.Comment: 29 pages 17 figure

    Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon

    Full text link
    The raise and peel model of a one-dimensional fluctuating interface (model A) is extended by considering one source (model B) or two sources (model C) at the boundaries. The Hamiltonians describing the three processes have, in the thermodynamic limit, spectra given by conformal field theory. The probability of the different configurations in the stationary states of the three models are not only related but have interesting combinatorial properties. We show that by extending Pascal's triangle (which gives solutions to linear relations in terms of integer numbers), to an hexagon, one obtains integer solutions of bilinear relations. These solutions give not only the weights of the various configurations in the three models but also give an insight to the connections between the probability distributions in the stationary states of the three models. Interestingly enough, Pascal's hexagon also gives solutions to a Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few references are adde

    Conformal invariance and its breaking in a stochastic model of a fluctuating interface

    Full text link
    Using Monte-Carlo simulations on large lattices, we study the effects of changing the parameter uu (the ratio of the adsorption and desorption rates) of the raise and peel model. This is a nonlocal stochastic model of a fluctuating interface. We show that for 0<u<10<u<1 the system is massive, for u=1u=1 it is massless and conformal invariant. For u>1u>1 the conformal invariance is broken. The system is in a scale invariant but not conformal invariant phase. As far as we know it is the first example of a system which shows such a behavior. Moreover in the broken phase, the critical exponents vary continuously with the parameter uu. This stays true also for the critical exponent τ\tau which characterizes the probability distribution function of avalanches (the critical exponent DD staying unchanged).Comment: 22 pages and 20 figure

    Refined Razumov-Stroganov conjectures for open boundaries

    Full text link
    Recently it has been conjectured that the ground-state of a Markovian Hamiltonian, with one boundary operator, acting in a link pattern space is related to vertically and horizontally symmetric alternating-sign matrices (equivalently fully-packed loop configurations (FPL) on a grid with special boundaries).We extend this conjecture by introducing an arbitrary boundary parameter. We show that the parameter dependent ground state is related to refined vertically symmetric alternating-sign matrices i.e. with prescribed configurations (respectively, prescribed FPL configurations) in the next to central row. We also conjecture a relation between the ground-state of a Markovian Hamiltonian with two boundary operators and arbitrary coefficients and some doubly refined (dependence on two parameters) FPL configurations. Our conjectures might be useful in the study of ground-states of the O(1) and XXZ models, as well as the stationary states of Raise and Peel models.Comment: 11 pages LaTeX, 8 postscript figure

    Conference: 51st Meeting of Lawyers in Opatija

    Get PDF
    U radu se prikazuje 51. susret pravnika u Opatiji, odrzan od 15. do 17. svibnja 2013
    corecore