661 research outputs found

    THE PRACTICALITY AND EFFECTIVENESS OF LESSON PLAN SET ON NATURAL SCIENCE SUBJECT IN TRAINING THE CRITICAL THINKING SKILLS OF JUNIOR HIGH SCHOOL STUDENTS

    Get PDF
    This research aims to evaluate the practicality and effectiveness of natural science subject lesson plan set on the concept of plant structure and its utilization in technology in training the critical thinking skills of junior high school students. The lesson plan set includes syllabi, lesson plan, student worksheet, teaching material, media, and assessment sheet. The development is using Plomp and Nieveen’s development steps which consist of preliminary research and prototyping. The method used in this research is descriptive qualitative. The research is done in five months (July-November 2017) at the State Junior High Schools 1 in Banjarmasin. The subject of the small group test is 12 students of VIII B Class and field test is 34 students of VIII D Class. The subject appointment is done purposively, which based on high, medium, and low academic capability. The practicality data is obtained from 1) lesson plan implementation and 2) students’ responses. The effectiveness data is obtained from the learning result of 1) spiritual, 2) affective, 3) cognitive, 4) psychomotor, 5) critical thinking skills, 6) teachers’ activities, and 7) students’ activities. Data analysis is done descriptively. The result shows that the lesson plan set is practical to use based on the implementation of lesson plan and students’ responses. Lesson plan set is effective to use based on the criteria of the learning result of 1) spiritual, 2) affective, 3) cognitive, 4) psychomotor, 5) critical thinking skills, 6) teachers’ activities, and 7) students’ activities.  Article visualizations

    On the background in the γp→ω(π0γ)p\gamma p \to \omega(\pi^0\gamma) p reaction and mixed event simulation

    Full text link
    In this paper we evaluate sources of background for the γp→ωp\gamma p \to \omega p, with the ω\omega detected through its π0γ\pi^0 \gamma decay channel, to compare with the experiment carried out at ELSA. We find background from γp→π0π0p\gamma p \to \pi^0 \pi^0 p followed by decay of a π0\pi^0 into two γ\gamma, recombining one π0\pi^0 and one γ\gamma, and from the γp→π0ηp\gamma p \to \pi^0 \eta p reaction with subsequent decay of the η\eta into two photons. This background accounts for the data at π0γ\pi^0 \gamma invariant masses beyond 700 MeV, but strength is missing at lower invariant masses which was attributed to photon misidentification events, which we simulate to get a good reproduction of the experimental background. Once this is done, we perform an event mixing simulation to reproduce the calculated background and we find that the method provides a good description of the background at low π0γ\pi^0 \gamma invariant masses but fakes the background at high invariant masses, making background events at low invariant masses, which are due to γ\gamma misidentification events, responsible for the background at high invariant masses which is due to the γp→π0π0p\gamma p \to \pi^0 \pi^0 p and γp→π0ηp\gamma p \to \pi^0 \eta p reactions.Comment: 10 pages, 5 figure

    A spectroscopic and molecular dynamics study on the aggregation process of a long-acting lipidated therapeutic peptide: the case of semaglutide

    Get PDF
    The aggregation properties of semaglutide, a lipidated peptide drug agonist of the Glucagon-like peptide 1 receptor recently approved for the treatment of type 2 diabetes, have been investigated by spectroscopic techniques (UV-Vis absorption, steady-state and time-resolved fluorescence, and electronic circular dichroism) and molecular dynamics simulations. We show that in the micromolar concentration region, in aqueous solution, semaglutide is present as monomeric and dimeric species, with a characteristic monomer-to-dimer transition occurring at around 20 μM. The lipid chain stabilizes a globular morphology of the monomer and dimer species, giving rise to a locally well-defined polar outer surface where the lipid and peptide portions are packed to each other. At very long times, these peptide clusters nucleate the growth of larger aggregates characterized by blue luminescence and a β-sheet arrangement of the peptide chains. The understanding of the oligomerization and aggregation potential of peptide candidates is key for the development of long acting and stable drugs

    A new highly segmented start counter for the CLAS detector

    Get PDF
    The design, construction and performance of a highly segmented Start Counter are described. The Start Counter is an integral part of the trigger used in photon beam running with CLAS in Hall B at the Thomas Jefferson National Accelerator Facility (TJNAF). The Start Counter is constructed of 24 2.2-mm-thick single-ended scintillation paddles, forming a hermetic hexagon around the target region. This device measures the interaction time of the incoming photon in the target by detecting the outgoing particles. The counter provides complex trigger topologies, shows good efficiency and achieved a time resolution of 350 ps

    Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab

    Full text link
    MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. This Letter of Intent presents the MeV-GeV DM discovery potential for a 1 m3^3 segmented plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls, receiving up to 1022^{22} electrons-on-target (EOT) in a one-year period. This experiment (Beam-Dump eXperiment or BDX) is sensitive to DM-nucleon elastic scattering at the level of a thousand counts per year, with very low threshold recoil energies (∼\sim1 MeV), and limited only by reducible cosmogenic backgrounds. Sensitivity to DM-electron elastic scattering and/or inelastic DM would be below 10 counts per year after requiring all electromagnetic showers in the detector to exceed a few-hundred MeV, which dramatically reduces or altogether eliminates all backgrounds. Detailed Monte Carlo simulations are in progress to finalize the detector design and experimental set up. An existing 0.036 m3^3 prototype based on the same technology will be used to validate simulations with background rate estimates, driving the necessary R&\&D towards an optimized detector. The final detector design and experimental set up will be presented in a full proposal to be submitted to the next JLab PAC. A fully realized experiment would be sensitive to large regions of DM parameter space, exceeding the discovery potential of existing and planned experiments by two orders of magnitude in the MeV-GeV DM mass range.Comment: 28 pages, 17 figures, submitted to JLab PAC 4
    • …
    corecore