72 research outputs found

    A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods

    Get PDF
    The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions

    The King is Dead, Long Live the King: Entering A New Era of Stem Cell Research and Clinical Development

    Get PDF
    In mid November the biopharma industry was shocked by the announcement from Geron that they were ending work on embryonic stem cell research and therapy. For more than 10 years the public image of all stem cell research has been equated with embryonic stem cells. Unfortunately, a fundamentally important medical and financial fact was being ignored: embryonic stem cell therapy is extremely immature. In parallel to efforts in embryonic stem cell research and development, scientists and physicians in the field of adult stem cells realized that the natural role of adult stem cells in the body is to promote healing and to act like endogenous "repair cells" and, as a result, numerous companies have entered the field of adult stem cell therapy with the goal of expanding numbers of adult stem cells for administration to patients with various conditions. In contrast to embryonic stem cells, which are extremely expensive and potentially dangerous, adult cell cells are inexpensive and have an excellent safety record when used in humans. Many studies are now showing that adult stem cells are practical, patient-applicable, therapeutics that are very close to being available for incorporation into the practice of medicine. These events signal the entrance of the field of stem cells into a new era: an era where hype and misinformation no longer triumph over economic and medical realities

    Therapeutic use of Aldaraâ„¢ in chronic myeloid leukemia

    Get PDF
    The potent clinical responses seen in patients with chronic myeloid leukemia (CML) after administration of donor-specific lymphocytes, as well as the correlation between the presence of antigen specific T cells and prolonged remission in these patients, suggests a role for the immunological control of CML. Here we propose Aldaraâ„¢, a clinically used formulation of imiquimod, as an agent for augmenting immune responses to CML antigens. Our proposition is based upon 3 tenets: 1) Endogenous dendritic cells (DC) of CML patients, which are known to be derived from the malignant clone, express and present various leukemic antigens; 2) CML-antigen reactive T cell clones exist in the patient but in many situations are ineffectively stimulated to cause significant hematological responses; and 3) Antigen presentation by mature, activated DC, which endogenously express CML-antigens may endow the pre-existing ineffective T cell responses with ability to control CML progression. The practical use of Aldaraâ„¢ as a localized activator of DC in the context of present day leukemic therapeutics, as well as various properties of this unique immune modulator will be discussed

    Cord blood in regenerative medicine: do we need immune suppression?

    Get PDF
    Cord blood is currently used as an alternative to bone marrow as a source of stem cells for hematopoietic reconstitution after ablation. It is also under intense preclinical investigation for a variety of indications ranging from stroke, to limb ischemia, to myocardial regeneration. A major drawback in the current use of cord blood is that substantial morbidity and mortality are associated with pre-transplant ablation of the recipient hematopoietic system. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to fully compromise the recipient immune system. Issues raised will include: graft versus host potential, the immunogeneicity of the cord blood graft, and the parallels between cord blood transplantation and fetal to maternal trafficking. The previous use of unmatched cord blood in absence of any immune ablation, as well as potential steps for widespread clinical implementation of allogeneic cord blood grafts will also be discussed

    A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods

    Get PDF
    The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions

    Stem Cell Therapy for Autism

    Get PDF
    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism

    Ethics of International Stem Cell Treatments and the Risk-Benefit of Helping Patients

    Get PDF
    Numerous and diverse participants are involved in the development of novel therapies: patients, physicians, scientists, sponsors, governing bodies, lawmakers, institutional review boards, and bioethics proponents. While the welfare of the patient must always and unquestionably be at the forefront of any intervention along with informed consent, their wishes, their requests, and their expectations should also be considered at every step. The availability of stem cell research in various countries with dissimilar regulatory agencies has opened the door for thought-provoking questions about their validity from an ethical, legal, and moral perspective, which will be addressed in this chapter, framed within the doctor-patient relationship

    Feasibility investigation of allogeneic endometrial regenerative cells

    Get PDF
    Endometrial Regenerative Cells (ERC) are a population of mesenchymal-like stem cells having pluripotent differentiation activity and ability to induce neoangiogenesis. In vitro and animal studies suggest ERC are immune privileged and in certain situations actively suppress ongoing immune responses. In this paper we describe the production of clinical grade ERC and initial safety experiences in 4 patients with multiple sclerosis treated intravenously and intrathecally. The case with the longest follow up, of more than one year, revealed no immunological reactions or treatment associated adverse effects. These preliminary data suggest feasibility of clinical ERC administration and support further studies with this novel stem cell type

    A novel method of modifying immune responses by vaccination with lipiodol-siRNA mixtures

    Get PDF
    The dendritic cell (DC) possesses the ability to stimulate both T helper 1 (Th1) and Th2 responses depending on activation stimuli. Although it is known that chemically or genetically modified DC can be used therapeutically to steer immune responses towards either Th1 or Th2, cellular therapy with ex vivo manipulated DC is clinically difficult. Here we demonstrate a novel method of switching immune responses from Th1 to Th2 through in vivo immune modulation by administration of siRNA. We demonstrate that siRNA targeting of the IL-12p35 gene leads to a Th2 bias in vitro through an IL-10 dependent mechanism. In vivo administration of siRNA admixed with the oil-based contrast agent lipiodol in the presence of antigen and adjuvant induced a deviation in recall response to reduced production of IFN-γ and augmented IL-4 response using either KLH or ovalbumin. This simple method of in vivo modification of immune response possesses therapeutic potential in Th1-mediated diseases such as multiple sclerosis and autoimmune diabetes
    • …
    corecore