29 research outputs found

    Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract

    Get PDF
    Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT

    Genetic Drivers of Kidney Defects in the DiGeorge Syndrome

    Get PDF
    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5Ă—10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.)

    Gender differences in solitary functioning kidney: do they affect renal outcome?

    No full text

    Genetic basis of human congenital anomalies of the kidney and urinary tract

    No full text
    The clinical spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) encompasses a common birth defect in humans that has significant impact on long-term patient survival. Overall, data indicate that approximately 20% of patients may have a genetic disorder that is usually not detected based on standard clinical evaluation, implicating many different mutational mechanisms and pathogenic pathways. In particular, 10% to 15% of CAKUT patients harbor an unsuspected genomic disorder that increases risk of neurocognitive impairment and whose early recognition can impact clinical care. The emergence of high-throughput genomic technologies is expected to provide insight into the common and rare genetic determinants of diseases and offer opportunities for early diagnosis with genetic testing

    Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations

    No full text
    Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development
    corecore