7 research outputs found

    Testosterone Diminishes Cabazitaxel Efficacy and Intratumoral Accumulation in a Prostate Cancer Xenograft Model

    Get PDF
    Inactivation of the androgen receptor (AR) pathway by androgen deprivation therapy (ADT) is the mainstay of (metastatic) prostate cancer therapy. Ultimately, the AR pathway will be re-activated despite castrate levels of circulating androgens. Thereby, maintaining its role even in castration resistant prostate cancer (CRPC). The recent STAMPEDE and CHAARTED trials showed that docetaxel in combination with ADT increased survival in hormone sensitive prostate cancer patients, suggesting cross-talk between AR signaling and chemotherapy efficacy. We hypothesized that a similar interaction may also apply for CRPC that is treated with cabazitaxel. We studied the impact of androgen status on the efficacy, pharmacodynamics and -kinetics of cabazitaxel in a unique and clinically relevant patient derived xenograft model of castration resistant disease. We found that cabazitaxel is highly effective in a castrate setting with strongly reduced AR activation, while tumor growth inhibition by cabazitaxel was completely abolished in the presence of high AR pathway activity. Moreover, additional experiments showed that intratumoral cabazitaxel levels were 3.5 times higher in tumors from castrated mice as compared to tumors from androgen-supplemented animals. We confirmed that cabazitaxel pharmacokinetics were not affected by testosterone, suggesting that androgen status might influence cabazitaxel tumor uptake directly. This study reveals the impact of androgen status on cabazitaxel efficacy and supports the potential of combination of taxane chemotherapeutics with AR axis targeting agents

    Evaluating Baculovirus as a Vector for Human Prostate Cancer Gene Therapy

    Get PDF
    Gene therapy represents an attractive strategy for the non-invasive treatment of prostate cancer, where current clinical interventions show limited efficacy. Here, we evaluate the use of the insect virus, baculovirus (BV), as a novel vector for human prostate cancer gene therapy. Since prostate tumours represent a heterogeneous environment, a therapeutic approach that achieves long-term regression must be capable of targeting multiple transformed cell populations. Furthermore, discrimination in the targeting of malignant compared to non-malignant cells would have value in minimising side effects. We employed a number of prostate cancer models to analyse the potential for BV to achieve these goals. In vitro, both traditional prostate cell lines as well as primary epithelial or stromal cells derived from patient prostate biopsies, in two- or three-dimensional cultures, were used. We also evaluated BV in vivo in murine prostate cancer xenograft models. BV was capable of preferentially transducing invasive malignant prostate cancer cell lines compared to early stage cancers and non-malignant samples, a restriction that was not a function of nuclear import. Of more clinical relevance, primary patient-derived prostate cancer cells were also efficiently transduced by BV, with robust rates observed in epithelial cells of basal phenotype, which expressed BV-encoded transgenes faster than epithelial cells of a more differentiated, luminal phenotype. Maximum transduction capacity was observed in stromal cells. BV was able to penetrate through three-dimensional structures, including in vitro spheroids and in vivo orthotopic xenografts. BV vectors containing a nitroreductase transgene in a gene-directed enzyme pro-drug therapy approach were capable of efficiently killing malignant prostate targets following administration of the pro-drug, CB1954. Thus, BV is capable of transducing a large proportion of prostate cell types within a heterogeneous 3-D prostate tumour, can facilitate cell death using a pro-drug approach, and shows promise as a vector for the treatment of prostate cancer

    Imaging heterogeneity of peptide delivery and binding in solid tumors using SPECT imaging and MRI

    Get PDF
    Background: As model system, a solid-tumor patient-derived xenograft (PDX) model characterized by high peptide receptor expression and histological tissue homogeneity was used to study radiopeptide targeting. In this solid-tumor model, high tumor uptake of targeting peptides was expected. However, in vivo SPECT images showed substantial heterogeneous radioactivity accumulation despite homogenous receptor distribution in the tumor xenografts as assessed by in vitro autoradiography. We hypothesized that delivery of peptide to the tumor cells is dictated by adequate local tumor perfusion. To study this relationship, sequential SPECT/CT and MRI were performed to assess the role of vascular functionality in radiopeptide accumulation. Methods: High-resolution SPECT and dynamic contrast-enhanced (DCE)-MRI were acquired in six mice bearing PC295 PDX tumors expressing the gastrin-releasing peptide (GRP) receptor. Two hours prior to SPECT imaging, animals received 25 MBq 111In(DOTA-(βAla)2-JMV594) (25 pmol). Images were acquired using multipinhole SPECT/CT. Directly after SPECT imaging, MR images were acquired on a 7.0-T dedicated animal scanner. DCE-MR images were quantified using semi-quantitative and quantitative models. The DCE-MR and SPECT images were spatially aligned to compute the correlations between radioactivity and DCE-MRI-derived parameters over the tumor. Results: Whereas histology, in vitro autoradiography, and multiple-weighted MRI scans all showed homogenous tissue characteristics, both SPECT and DCE-MRI showed heterogeneous distribution patterns throughout the tumor. The average Spearman’s correlation coefficient between SPECT and DCE-MRI ranged from 0.57 to 0.63 for the “exchange-related” DCE-MRI perfusion parameters. Conclusions: A positive correlation was shown between exchange-related DCE-MRI perfusion parameters and the amount of radioactivity accumulated as measured by SPECT, demonstrating that vascular function was an important aspect of radiopeptide distribution in solid tumors. The combined use of SPECT and MRI added crucial information on the perfusion efficiency versus radiopeptide upt

    Ex vivo treatment of prostate tumor tissue recapitulates in vivo therapy response

    Get PDF
    Background: In vitro models of prostate cancer (PCa) are not always reliable to evaluate anticancer treatment efficacy. This limitation may be overcome by using viable tumor slice material. Here we report on the establishment of an optimize

    Loss of SLCO1B3 drives taxane resistance in prostate cancer

    Get PDF
    Background: Both taxanes, docetaxel and cabazitaxel, are effective treatments for metastatic castration-resistant prostate cancer (mCRPC). However, resistance to taxanes is common. Our objective was to investigate mechanisms of taxane resistance in prostate cancer. Methods: Two docetaxel-resistant patient-derived xenografts (PDXs) of CRPC were established (PC339-DOC and PC346C-DOC) in male athymic nude mice by frequent intraperitoneal administrations of docetaxel. Next-generation sequencing was performed on PDX tissue pre- and post-docetaxel resistance and gene expression profiles were compared. [14C]-docetaxel and [14C]-cabazitaxel uptake assays in vitro and cytotoxicity assays were performed to validate direct involvement of transporter genes in taxane sensitivity. Results: Organic anion-transporting polypeptide (SLCO1B3), an influx transporter of docetaxel, was significantly downregulated in PC346C-DOC tumours. In accordance with this finding, intratumoural concentrations of docetaxel and cabazitaxel were significantly decreased in PC346C-DOC as compared with levels in chemotherapy-naive PC346C tumours. In addition, silencing of SLCO1B3 in chemo-naive PC346C resulted in a two-fold decrease in intracellular concentrations of both taxanes. Overexpression of SLCO1B3 showed higher sensitivity to docetaxel and cabazitaxel. Conclusions: The SLCO1B3 determines intracellular concentrations of docetaxel and cabazitaxel and consequently influences taxane efficacy. Loss of the drug transporter SLCO1B3 may drive taxane resistance in prostate cancer

    Androgen receptor signalling impairs docetaxel efficacy in castration-resistant prostate cancer

    Get PDF
    Androgen receptor (AR) signalling drives neoplastic growth and therapy resistance in prostate cancer. Recent clinical data show that docetaxel combined with androgen deprivation therapy improves outcome in hormone-sensitive disease. We studied whether testosterone and AR signalling interferes with docetaxel treatment efficacy in castration-resistant prostate cancer (CRPC). We found that testosterone supplementation significantly impaired docetaxel tumour accumulation in a CRPC model, resulting in decreased tubulin stabilisation and antitumour activity. Furthermore, testosterone competed with docetaxel for uptake by the drug transporter OATP1B3. Irrespective of docetaxel-induced tubulin stabilisation, AR signalling by testosterone counteracted docetaxel efficacy. AR-pathway activation could also reverse long-term tumour regression by docetaxel treatment in vivo. These results indicate that to optimise docetaxel efficacy, androgen levels and AR signalling need to be suppressed. This study lends evidence for continued maximum suppression of AR signalling by combining targeted therapeutics with docetaxel in CRPC

    Continued Androgen Signalling Inhibition improves Cabazitaxel Efficacy in Prostate Cancer: Adding enzalutamide to cabazitaxel in hormone refractory PCa

    No full text
    Background:: The androgen receptor (AR) pathway is a key driver of neoplastic behaviour in the different stages of metastatic prostate cancer (mPCa). Targeting the AR therefore remains the cornerstone for mPCa treatment. We have previously reported that activation of AR signalling affects taxane chemo-sensitivity in preclinical models of castration resistant PCa (CRPC). Here, we explored the anti-tumour efficacy of the AR targeted inhibitor enzalutamide combined with cabazitaxel. Methods:: We used the AR positive CRPC model PC346C-DCC-K to assess the in vitro and in vivo activity of combining enzalutamide with cabazitaxel. Subsequent validation studies were performed using an enzalutamide resistant VCaP model. To investigate the impact of AR signalling on cabazitaxel activity we used quantitative live-cell imaging of tubulin stabilization and apoptosis related nuclear fragmentation. Findings:: Enzalutamide strongly amplified cabazitaxel anti-tumour activity in the patient-derived xenograft models PC346C-DCC-K (median time to humane endpoint 77 versus 48 days, P&lt;0.0001) and VCaP-Enza-B (median time to humane endpoint 80 versus 53 days, P&lt;0.001). Although enzalutamide treatment by itself was ineffective in reducing tumour growth, it significantly suppressed AR signalling in PC346C-DCC-K tumours as shown by AR target gene expression. The addition of enzalutamide enhanced cabazitaxel induced apoptosis as shown by live-cell imaging (P&lt;0.001). Interpretation:: Our study demonstrates that cabazitaxel efficacy can be improved by simultaneous blocking of AR signalling by enzalutamide, even if AR targeted treatment no longer affects tumour growth. These findings support clinical studies that combine AR targeted inhibitors with cabazitaxel in CRPC.</p
    corecore