11 research outputs found

    Fluctuation-dissipation relations in plaquette spin systems with multi-stage relaxation

    Full text link
    We study aging dynamics in two non-disordered spin models with multi-spin interactions, following a sudden quench to low temperature. The models are relevant to the physics of supercooled liquids. Their low temperature dynamics resemble those of kinetically constrained models, and obey dynamical scaling, controlled by zero-temperature critical points. Dynamics in both models are thermally activated, resulting in multi-stage relaxation towards equilibrium. We study several two-time correlation and response functions. We find that equilibrium fluctuation-dissipation relations are generically not satisfied during the aging regime, but deviations from them are well described by fluctuation-dissipation ratios, as found numerically in supercooled liquids. These ratios are purely dynamic objects, containing information about the nature of relaxation in the models. They are non-universal, and can even be negative as a result of activated dynamics. Thus, effective temperatures are not well-defined in these models.Comment: 29 pages, 10 fig

    Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking.

    Get PDF
    Poly(L-lysine)/hyaluronan (PLL/HA) films were chemically cross-linked with a water soluble carbodiimide (EDC) in combination with a N-hydroxysulfo-succinimide (NHS) to induce amide formation. Fourier transform infrared spectroscopy confirms the conversion of carboxylate and ammonium groups into amide bonds. Quartz crystal microbalance-dissipation reveals that the cross linking reaction is accompanied by a change in the viscoelastic properties of the films leading to more rigid films. After the cross-linking reaction, both positively and negatively ending films exhibit a negative zeta potential. It is shown by fluorescence recovery after photobleaching measured by confocal laser scanning microscopy that cross-linking dramatically reduces the diffusion of the PLL chains in the network. Cross linking also renders the films highly resistant to hyaluronidase, an enzyme that naturally degrades hyaluronan. Finally, the adhesion of chondrosarcoma cells on the films terminating either with PLL or HA is also investigated. Whereas the non cross-linked films are highly resistant to cell adhesion, the cells adhere and spread well on the cross-linked films.comparative studyjournal articleresearch support, non-u.s. gov't2004 Mar-Aprimporte

    Nucleic Acids Res

    Get PDF
    The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (-)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11-55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger-dependent binding of NC to the G(10) and G(50) residues. Sequence comparison further revealed that C*A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G(10) and G(50) the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway

    Rsc Adv

    Get PDF
    A Forster resonance energy transfer (FRET) system of semiconductor quantum dots and porphyrins represents a new promising photosensitizing tool for the photodynamic therapy of cancer. In this work, we demonstrate the ability of a non-covalent complex formed between commercial lipid-coated CdSe/ ZnS quantum dots (QD) bearing different terminal groups (carboxyl, amine or non-functionalized) and a second-generation photosensitizer, chlorin e(6) (Ce-6) to enter living HeLa cells with maintained integrity and perform FRET from two-photon excited QD to bound Ce-6 molecules. Spectroscopic changes, the highly efficient FRET, observed upon Ce-6 binding to QD, and remarkable stability of the QD-Ce-6 complex in different media suggest that Ce-6 penetrates inside the lipid coating close to the inorganic core of QD. Two-photon fluorescence lifetime imaging microscopy (FLIM) on living HeLa cells revealed that QD-Ce-6 complexes localize within the plasma membrane and intracellular compartments and preserve high FRET efficiency (similar to 50%). The latter was confirmed by recovery of QD emission lifetime after photobleaching of Ce-6. The intracellular distribution pattern and FRET efficiency of QD-Ce-6 complexes did not depend on the charge of QD terminal groups. Given the non-covalent nature of the complex, its exceptional stability in cellulo can be explained by a combination of hydrophobic interactions and coordination of carboxyl groups of Ce6 with the ZnS shell of QD. These findings suggest a simple route to the preparation of QD-photosensitizer complexes featuring efficient FRET and high stability in cellulo without using time-consuming conjugation protocols

    Nanoscale Stiffness Distribution in Bone Metastasis

    Get PDF
    Nanomechanical heterogeneity is expected to have an effect on elasticity, injury and bone remodelling. In normal bone, we have two types of cells (osteoclasts and osteoblasts) working together to maintain existing bone. Bone cancers can produce factors that make the osteoclasts work harder. This means that more bone is destroyed than rebuilt, and leads to weakening of the affected bone. We report here the first demonstration of the nanoscale stiffness distribution in bone metastases before and after treatment of animals with the bisphosphonate Risedronate, a drug which is currently used for the treatment of bone metastases in patients with advanced cancers. The strategy used here is applicable to a wide class of biological tissues and may serve as a new reflection for biologically inspired scaffolds technologies

    Biosci Rep

    Get PDF
    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs

    Biochemistry

    No full text
    UHRF1 plays a central role in the maintenance and transmission of epigenetic modifications by recruiting DNMT1 to hemimethylated CpG sites via its SET and RING-associated (SRA) domain, ensuring error-free duplication of methylation profiles. To characterize SRA-induced changes in the conformation and dynamics of a target 12 bp DNA duplex as a function of the methylation status, we labeled duplexes by the environment-sensitive probe 2-aminopurine (2-Ap) at various positions near or far from the central CpG recognition site containing either a nonmodified cytosine (NM duplex), a methylated cytosine (HM duplex), or methylated cytosines on both strands (BM duplex). Steady-state and time-resolved fluorescence indicated that binding of SRA induced modest conformational and dynamical changes in NM, HM, and BM duplexes, with only slight destabilization of base pairs, restriction of global duplex flexibility, and diminution of local nucleobase mobility. Moreover, significant restriction of the local motion of residues flanking the methylcytosine in the HM duplex suggested that these residues are more rigidly bound to SRA, in line with a slightly higher affinity of the HM duplex as compared to that of the NM or BM duplex. Our results are consistent with a "reader" role, in which the SRA domain scans DNA sequences for hemimethylated CpG sites without perturbation of the structure of contacted nucleotides

    J Virol

    No full text
    The HIV-1 viral infectivity factor (Vif) is a small basic protein essential for viral fitness and pathogenicity. Vif allows productive infection in nonpermissive cells, including most natural HIV-1 target cells, by counteracting the cellular cytosine deaminases APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G [A3G]) and A3F. Vif is also associated with the viral assembly complex and packaged into viral particles through interactions with the viral genomic RNA and the nucleocapsid domain of Pr55(Gag). Recently, we showed that oligomerization of Vif into high-molecular-mass complexes induces Vif folding and influences its binding to high-affinity RNA binding sites present in the HIV genomic RNA. To get further insight into the role of Vif multimerization in viral assembly and A3G repression, we used fluorescence lifetime imaging microscopy (FLIM)- and fluorescence resonance energy transfer (FRET)-based assays to investigate Vif-Vif interactions in living cells. By using two N-terminally tagged Vif proteins, we show that Vif-Vif interactions occur in living cells. This oligomerization is strongly reduced when the putative Vif multimerization domain ((161)PPLP(164)) is mutated, indicating that this domain is crucial, but that regions outside this motif also participate in Vif oligomerization. When coexpressed together with Pr55(Gag), Vif is largely relocated to the cell membrane, where Vif oligomerization also occurs. Interestingly, wild-type A3G strongly interferes with Vif multimerization, contrary to an A3G mutant that does not bind to Vif. These findings confirm that Vif oligomerization occurs in living cells partly through its C-terminal motif and suggest that A3G may target and perturb the Vif oligomerization state to limit its functions in the cell
    corecore