337 research outputs found
Behavior of an Escolar Lepidocybium flavobrunneum in the Windward Passage as Determined by Popup Satellite Archival Tagging
In June 2003, fisheries research was conducted in the Windward Passage using a chartered commercial pelagic longline vessel (Rice and Snodgrass 2003). This paper describes the habitat use by an escolar in this location tagged with a pop-up satellite archival tag (PSAT) that remained attached to the fish for 14 d. Data recovered from the PSAT were used to directly document diel vertical migration and ambient temperature range for the first time in a mesopelagic teleost
Recommended from our members
Effect of low /sup 60/Co dose rates on sister chromatid exchange incidence in the benthic worm. Neanthes arenaceodentata
The usefulness of sister chromatid exchange (SCE) induction as a measure of low-level radiation effect was examined in a benthic marine worm, Neanthes arenaceodentata. Larvae were exposed to /sup 60/Co radiation for 12 to 24 h at total doses ranging from 0.5 to 309 R and at dose rates from 0.04 to 13 R/h. Animals exposed at intermediate dose rates (0.5, 0.6, 1.25, 2.0, and 2.5 R/h) had SCE frequencies per chromosome about twice that of those receiving no radiation (controls), whereas those exposed at the higher dose rates (7.0 and 13 R/h) had SCE frequencies lower than the controls. Animals exposed at the lower dose rates (0.04 and 0.1 R/h) had lower SCE frequencies than those exposed at intermediate dose rates (and higher SCE frequencies than controls). The length of chromosome pair number one differed among metaphase spreads and was used as an index of chromosome condensation in a given metaphase. Because there is a possibility that chromosome morphology may affect the ability to resolve SCEs, morphology will be monitored in future studies. A preliminary experiment was performed to assess the effects of 2.2 and 11.5 R/h for 24 h on growth and development. Larvae observed at 6 and 17 d after irradiation did not have significantly different numbers of abnormal larvae or survival rates
Hysteresis in the Mott Transition between Plasma and Insulating Gas
We show that hysteresis can occur in the transition between a neutral plasma
and the insulating gas consisting of neutral pairs bound by Coulomb attraction.
Since the transition depends sensitively on the screening length in the plasma,
regions of bistability occur in density--temperature phase space. We present
numerical results which indicate where these regions occur for systems such as
spin-polarized hydrogen, positronium gas, and excitons in a semiconductor.Comment: 9 pages (Latex/RevTex), 6 postscript figures which are in compressed
and uuencoded file, prepared using the utility "uufiles" and separately
submitted. They should be automatically included with the text when it is
downloaded. Figures also available in hard copy from the authors
([email protected]; [email protected]); paper submitted to
Phys. Rev.
Structural and functional studies of histidine biosynthesis in Acanthamoeba spp. demonstrates a novel molecular arrangement and target for antimicrobials
Acanthamoeba is normally free-living, but sometimes facultative and occasionally opportunistic parasites. Current therapies are, by necessity, arduous and yet poorly effective due to their inabilities to kill cyst stages or in some cases to actually induce encystation. Acanthamoeba can therefore survive as cysts and cause disease recurrence. Herein, in pursuit of better therapies and to understand the biochemistry of this understudied organism, we characterize its histidine biosynthesis pathway and explore the potential of targeting this with antimicrobials. We demonstrate that Acanthamoeba is a histidine autotroph, but with the ability to scavenge preformed histidine. It is able to grow in defined media lacking this amino acid, but is inhibited by 3-amino-1,2,4-triazole (3AT) that targets Imidazoleglycerol-Phosphate Dehydratase (IGPD) the rate limiting step of histidine biosynthesis. The structure of Acanthamoeba IGPD has also been determined in complex with 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate [(R)-C348], a recently described novel inhibitor of Arabidopsis thaliana IGPD. This compound inhibited the growth of four Acanthamoeba species, having a 50% inhibitory concentration (IC50) ranging from 250-526 nM. This effect could be ablated by the addition of 1 mM exogenous free histidine, but importantly not by physiological concentrations found in mammalian tissues. The ability of 3AT and (R)-C348 to restrict the growth of four strains of Acanthamoeba spp. including a recently isolated clinical strain, while not inducing encystment, demonstrates the potential therapeutic utility of targeting the histidine biosynthesis pathway in Acanthamoeba
Lattice dynamics effects on small polaron properties
This study details the conditions under which strong-coupling perturbation
theory can be applied to the molecular crystal model, a fundamental theoretical
tool for analysis of the polaron properties. I show that lattice dimensionality
and intermolecular forces play a key role in imposing constraints on the
applicability of the perturbative approach. The polaron effective mass has been
computed in different regimes ranging from the fully antiadiabatic to the fully
adiabatic. The polaron masses become essentially dimension independent for
sufficiently strong intermolecular coupling strengths and converge to much
lower values than those tradition-ally obtained in small-polaron theory. I find
evidence for a self-trapping transition in a moderately adiabatic regime at an
electron-phonon coupling value of .3. Our results point to a substantial
independence of the self-trapping event on dimensionality.Comment: 8 pages, 5 figure
Search for Small Trans-Neptunian Objects by the TAOS Project
The Taiwan-America Occultation Survey (TAOS) aims to determine the number of
small icy bodies in the outer reach of the Solar System by means of stellar
occultation. An array of 4 robotic small (D=0.5 m), wide-field (f/1.9)
telescopes have been installed at Lulin Observatory in Taiwan to simultaneously
monitor some thousand of stars for such rare occultation events. Because a
typical occultation event by a TNO a few km across will last for only a
fraction of a second, fast photometry is necessary. A special CCD readout
scheme has been devised to allow for stellar photometry taken a few times per
second. Effective analysis pipelines have been developed to process stellar
light curves and to correlate any possible flux changes among all telescopes. A
few billion photometric measurements have been collected since the routine
survey began in early 2005. Our preliminary result of a very low detection rate
suggests a deficit of small TNOs down to a few km size, consistent with the
extrapolation of some recent studies of larger (30--100 km) TNOs.Comment: 4 pages, 3 figures, IAU Symposium 23
Discrimination of Potent Inhibitors of Toxoplasma gondii Enoyl-Acyl Carrier Protein Reductase by a Thermal Shift Assay
Many microbial pathogens rely on a type II fatty acid synthesis (FASII) pathway that is distinct from the type I pathway found in humans. Enoyl-acyl carrier protein reductase (ENR) is an essential FASII pathway enzyme and the target of a number of antimicrobial drug discovery efforts. The biocide triclosan is established as a potent inhibitor of ENR and has been the starting point for medicinal chemistry studies. We evaluated a series of triclosan analogues for their ability to inhibit the growth of Toxoplasma gondii, a pervasive human pathogen, and its ENR enzyme (TgENR). Several compounds that inhibited TgENR at low nanomolar concentrations were identified but could not be further differentiated because of the limited dynamic range of the TgENR activity assay. Thus, we adapted a thermal shift assay (TSA) to directly measure the dissociation constant (Kd) of the most potent inhibitors identified in this study as well as inhibitors from previous studies. Furthermore, the TSA allowed us to determine the mode of action of these compounds in the presence of the reduced nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide (NAD+) cofactor. We found that all of the inhibitors bind to a TgENR–NAD+ complex but that they differed in their dependence on NAD+ concentration. Ultimately, we were able to identify compounds that bind to the TgENR–NAD+ complex in the low femtomolar range. This shows how TSA data combined with enzyme inhibition, parasite growth inhibition data, and ADMET predictions allow for better discrimination between potent ENR inhibitors for the future development of medicine
Influence of auto-organization and fluctuation effects on the kinetics of a monomer-monomer catalytic scheme
We study analytically kinetics of an elementary bimolecular reaction scheme
of the Langmuir-Hinshelwood type taking place on a d-dimensional catalytic
substrate. We propose a general approach which takes into account explicitly
the influence of spatial correlations on the time evolution of particles mean
densities and allows for the analytical analysis. In terms of this approach we
recover some of known results concerning the time evolution of particles mean
densities and establish several new ones.Comment: Latex, 25 pages, one figure, submitted to J. Chem. Phy
The structure of a major surface antigen SAG19 from Eimeria tenella unifies the Eimeria SAG family
In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αβα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed
- …