5,175 research outputs found
The dynamics of Abell 2634
We have amassed a large sample of velocity data for the cluster of galaxies Abell 2634 which contains the wide-angle tail (WAT) radio source 3C 465. Robust indicators of location and scale and their confidence intervals are used to determine if the cD galaxy, containing the WAT, has a significant peculiar motion. We find a cD peculiar radial velocity of 219 plus or minus 98 km s(exp -1). Further dynamical analyses, including substructure and normality tests, suggest that A 2634 is an unrelaxed cluster whose radio source structure may be bent by the turbulent gas of a recent cluster-subcluster merger
Quasi-dark Mode in a Metamaterial for Analogous Electromagnetically-induced Transparency
We study a planar metamaterial supporting electromagnetically-induced
transparency (EIT)-like effect by exploiting the coupling between bright and
quasi-dark eigenmodes. The specific design of such a metamaterial consists of a
cut-wire (CW) and a single-gap split-ring resonator (SRR). From the numerical
and the analytical results we demonstrate that the response of SRR, which is
weakly excited by external electric field, is mitigated to be a quasi-dark
eigenmode in the presence of strongly radiative CW. This result suggests more
relaxed conditions for the realization of devices utilizing the EIT-like
effects in metamaterial, and thereby widens the possibilities for many
different structural implementations.Comment: 11 pages, 4 figure
Einstein Cluster Alignments Revisited
We have examined whether the major axes of rich galaxy clusters tend to point
toward their nearest neighboring cluster. We have used the data of Ulmer,
McMillan, and Kowalski, who used position angles based on X-ray morphology. We
also studied a subset of this sample with updated positions and distances from
the MX Northern Abell Cluster Survey (for rich clusters () with well
known redshifts). A Kolmogorov-Smirnov (KS) test showed no significant signal
for nonrandom angles on any scale Mpc. However, refining the
null hypothesis with the Wilcoxon rank-sum test, we found a high confidence
signal for alignment. Confidence levels increase to a high of 99.997% as only
near neighbors which are very close are considered. We conclude there is a
strong alignment signal in the data, consistent with gravitational instability
acting on Gaussian perturbations.Comment: Minor revisions. To be published in Ap
Superconducting gap structure of the 115's revisited
Density functional theory calculations of the electronic structure of Ce- and
Pu-based heavy fermion superconductors in the so-called 115 family are
performed. The gap equation is used to consider which superconducting order
parameters are most favorable assuming a pairing interaction that is peaked at
(\pi,\pi,q_z) - the wavevector for the antiferromagnetic ordering found in
close proximity. In addition to the commonly accepted order
parameter, there is evidence that an extended s-wave order parameter with nodes
is also plausible. We discuss whether these results are consistent with current
observations and possible measurements that could help distinguish between
these scenarios.Comment: 8 pages, 4 figures; Accepted for publication in JPC
The Ellipticity and Orientation of Clusters of Galaxies from N-Body Experiments
In this study we use simulations of 128 particles to study the
ellipticity and orientation of clusters of galaxies in N-body simulations of
differing power-law initial spectra (P(k) \propto k^n ,n = +1, 0, -1, -2\Omega_0 = 0.2nD < 15 h^{-1}n-$dependent way.Comment: 22 pages, requires aaspp4.sty, flushrt.sty, and epsf.sty Revised
manuscript, accepted for publication in Ap
Trend in ice moistening the stratosphere â constraints from isotope data of water and methane
Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H_(2)O, HDO, CH_4 and CH_(3)D in the period 1991â2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H_(2)O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H_(2)O are mirrored in the variation of the ratio of HDO to H_(2)O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H_(2)O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01±0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere
CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins
SummaryBefore transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca2+ levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca2+ triggered release of transmitters
Glucose metabolism and oscillatory behavior of pancreatic islets
A variety of oscillations are observed in pancreatic islets.We establish a
model, incorporating two oscillatory systems of different time scales: One is
the well-known bursting model in pancreatic beta-cells and the other is the
glucose-insulin feedback model which considers direct and indirect feedback of
secreted insulin. These two are coupled to interact with each other in the
combined model, and two basic assumptions are made on the basis of biological
observations: The conductance g_{K(ATP)} for the ATP-dependent potassium
current is a decreasing function of the glucose concentration whereas the
insulin secretion rate is given by a function of the intracellular calcium
concentration. Obtained via extensive numerical simulations are complex
oscillations including clusters of bursts, slow and fast calcium oscillations,
and so on. We also consider how the intracellular glucose concentration depends
upon the extracellular glucose concentration, and examine the inhibitory
effects of insulin.Comment: 11 pages, 16 figure
- âŠ