3,364 research outputs found

    Selenium Concentrations in Forages of a Northern Herbivore

    Get PDF
    The importance of adequate selenium in diets of native wild herbivores can only be inferred from data for beef cattle where minimum dietary concentrations range from 50 to 100 ppb. Concern about possible selenium deficiencies in wild herbivores is based on a few reports of symptoms in wildlife, a paucity of data on selenium in their forages, and the idea that excessive atmospheric sulfur may increase the incidence of selenium deficiencies in herbivores. Concentrations of selenium in sedges, Carex spp., and reedgrasses, Calamagrostis spp., the main food plants of bison, Bison bison, in northwestern Canada, varied from 9 to 800 ppb in samples collected at three lowlands locations. However, approximately three-quarters of all the samples of plant species consumed by bison were dietarily deficient by the beef cattle standard.Key words: Carex, Calamagrostis, bison, selenium concentrationMots clés: Carex, calamagrostis, bison, concentration de séléniu

    The Reliability of USU Telemetered Precipitation Data: 1. The Counter Precision Factor for 8 inch by 36 inch Gages

    Get PDF
    The telemetered precipitation data are read out as frequency or period numbers by an electronic counter. These counts are to be converted to inches of precipitation. The readout electronic count is within 1 count of the transmitted count. This study applies only to the 8 x 36 cans Using the frequency count readout gives a precision of +-.02 to +-.05 of water equivalence and varies between .02 and .04 when there is between 10 and 30 of water equivalence in the can. Period counts give more precise measurements, ranging between +-.01 and +-.03 of precipitation over the whole scale. It is only +-.01 when there is between 15 and 35 of water equivalence in the can. The study also provides an interim set of tables for converting frequency and period counts to precipitation amounts

    On the lack of X-ray iron line reverberation in MCG-6-30-15: Implications for the black hole mass and accretion disk structure

    Get PDF
    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverberation and exclude reverberation delays in the range 0.5-50ksec. This extends the conclusions of Lee et al. and suggests that the iron line flux remains constant on timescales as short as 0.5ksec. The large black hole mass (>10^8Msun) naively suggested by the constancy of the iron line flux is rejected on other grounds. We suggest that the black hole in MCG-6-30-15 has a mass of M_BH~10^6-10^7Msun and that changes in the ionization state of the disk may produce the puzzling spectral variability. Finally, it is found that the 8-15keV band lags the 2-4keV band by 50-100s. This result is used to place constraints on the size and geometry of the Comptonizing medium responsible for the hard X-ray power-law in this AGN.Comment: 11 pages, 13 postscript figures. Accepted for publication in Ap

    Iron Line Spectroscopy of NGC4593 with XMM-Newton: Where is the Black Hole Accretion Disk?

    Full text link
    We present an analysis of the 2-10keV XMM-Newton/EPIC-pn spectrum of the Seyfert-1 galaxy NGC4593. Apart from the presence of two narrow emission lines corresponding to the Kalpha lines of cold and hydrogen-like iron, this spectrum possesses a power-law form to within 3-5%. There is a marked lack of spectral features from the relativistic regions of the black hole accretion disk. We show that the data are, however, consistent with the presence of a radiatively-efficient accretion disk extending right down to the radius of marginal stability if it possesses low iron abundance, an appropriately ionized surface, a very high inclination, or a very centrally concentrated emission pattern (as has been observed during the Deep Minimum State of the Seyfert galaxy MCG-6-30-15). Deeper observations of this source are required in order to validate or reject these models.Comment: 6 pages, 3 postscript figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    The Nature of the UV/X-Ray Absorber in PG 2302+029

    Get PDF
    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km/s) UV absorption lines that form in an outflow from the active nucleus (Jannuzi et al. 2003). The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to detemine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (log U=1.6, N_H=10^22.4 cm^-2) over predict the O VI 1032, 1038 absorption unless the X-ray absorber is also outflowing at ~56,000 km/s, but they over predict the Ne VIII 770, 780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of < 10^15 cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.Comment: Accepted for Publication in Ap

    First Constraints on Iron Abundance versus Reflection Fraction from the Seyfert~1 Galaxy MCG--6-30-15

    Full text link
    We report on a joint ASCA and RXTE observation spanning an \sim 400~ks time interval of the bright Seyfert~1 galaxy MCG--6-30-15. The data clearly confirm the presence of a broad skewed iron line (WKαW_{K\alpha} \sim 266 eV) and Compton reflection continuum at higher energies reported in our previous paper. We also investigate whether the gravitational and Doppler effects that affect the iron line may also be manifest in the reflected continuum. The uniqueness of this data set is underlined by the extremely good statistics that we obtain from the approximately four million photons that make up the 2-20 keV RXTE PCA spectrum alone. This, coupled with the high energy coverage of HEXTE and the spectral resolution of ASCA in the iron line regime has allowed us to constrain the relationship between abundance and reflection fraction for the first time at the 99 per cent confidence level. The reflection fraction is entirely consistent with a flat disk, i.e. the cold material subtends 2π\rm 2 \pi sr at the source, to an accuracy of 20 per cent. Monte Carlo simulations show that the observed strong iron line intensity is explained by an overabundance of iron by a factor of \sim 2 and an underabundance of the lower-Z elements by a similar factor. By considering non-standard abundances, a clear and consistent picture can be made in which both the iron line and reflection continuum come from the same material such as e.g. an accretion disk.Comment: 8 pages, 8 figures, accepted for publication MNRAS 7/9

    The ASCA X-Ray Spectrum Of The Broad-Line Radio Galaxy Pictor A: A Simple Power Law With No Fe K-alpha Line

    Full text link
    We present the X-ray spectrum of the broad-line radio galaxy Pictor A as observed by ASCA in 1996. The main objective of the observation was to detect and study the profiles of the Fe~Kα\alpha lines. The motivation was the fact that the Balmer lines of this object show well-separated displaced peaks, suggesting an origin in an accretion disk. The 0.5-10 keV X-ray spectrum is described very well by a model consisting of a power law of photon index 1.77 modified by interstellar photoelectric absorption. We find evidence for neither a soft nor a hard (Compton reflection) excess. More importantly, we do not detect an Fe K-alpha line, in marked contrast with the spectra of typical Seyfert galaxies and other broad-line radio galaxies observed by ASCA. The 99%-confidence upper limit on the equivalent width of an unresolved line at a rest energy of 6.4 keV is 100 eV, while for a broad line (FWHM of approximately 60,000 km/s) the corresponding upper limit is 135 eV. We discuss several possible explanations for the weakness of the Fe K-alpha line in Pictor~A paying attention to the currently available data on the properties of Fe K-alpha lines in other broad-line radio galaxies observed by ASCA. We speculate that the absence of a hard excess (Compton reflection) or an Fe K-alpha line is an indication of an accretion disk structure that is different from that of typical Seyfert galaxies, e.g., the inner disk may be an ion torus.Comment: To appear in the Astrophysical Journal (18 pages, including 8 postscript figures; uses psfig.tex

    Relativistic Broadening of Iron Emission Lines in a Sample of AGN

    Full text link
    We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei (AGN) that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.Comment: 50 pages (preprint format), 24 figures. Accepted by Ap

    Constraining the Spin of the Black Hole in Fairall 9 with Suzaku

    Full text link
    We report on the results of spectral fits made to data obtained from a 168 ksec Suzaku observation of the Seyfert-1 galaxy Fairall 9. The source is clearly detected out to 30 keV. The observed spectrum is fairly simple; it is well-described by a power-law with a soft excess and disk reflection. A broad iron line is detected, and easily separated from distinct narrow components owing to the resolution of the CCDs in the X-ray Imaging Spectrometer (XIS). The broad line is revealed to be asymmetric, consistent with a disk origin. We fit the XIS and Hard X-ray Detector (HXD) spectra with relativistically-blurred disk reflection models. With the assumption that the inner disk extends to the innermost stable circular orbit, the best-fit model implies a black hole spin parameter of a = 0.60(7) and excludes extremal values at a high level of confidence. We discuss this result in the context of Seyfert observations and models of the cosmic distribution of black hole spin.Comment: Accepted for publication in Ap
    corecore