7,053 research outputs found

    A Proposal for a Differential Calculus in Quantum Mechanics

    Full text link
    In this paper, using the Weyl-Wigner-Moyal formalism for quantum mechanics, we develop a {\it quantum-deformed} exterior calculus on the phase-space of an arbitrary hamiltonian system. Introducing additional bosonic and fermionic coordinates we construct a super-manifold which is closely related to the tangent and cotangent bundle over phase-space. Scalar functions on the super-manifold become equivalent to differential forms on the standard phase-space. The algebra of these functions is equipped with a Moyal super-star product which deforms the pointwise product of the classical tensor calculus. We use the Moyal bracket algebra in order to derive a set of quantum-deformed rules for the exterior derivative, Lie derivative, contraction, and similar operations of the Cartan calculus.Comment: TeX file with phyzzx macro, 43 pages, no figure

    The place of space technology in economic development: Reflections on present and future aspects

    Get PDF
    The effects of the development of satellite applications on the orientation of the space effort were examined. The gap between available and exploited technology, the impact of the current economic climate and future trends are discussed. Europe's low level of public funding for its space effort, in comparison to other space powers, and the dangers of complacency regarding Europe's competitiveness in the space market are illustrated. A proposal for the general direction which Europe's future strategy must take if European independence in this field is to be preserved is presented

    Get the gist? The effects of processing depth on false recognition in short-term and long-term memory

    Get PDF
    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays

    Effective Average Action of Chern-Simons Field Theory

    Full text link
    The renormalization of the Chern-Simons parameter is investigated by using an exact and manifestly gauge invariant evolution equation for the scale-dependent effective average action.Comment: 14 pages, late

    Renormalization Group Flow of the Holst Action

    Get PDF
    The renormalization group (RG) properties of quantum gravity are explored, using the vielbein and the spin connection as the fundamental field variables. The scale dependent effective action is required to be invariant both under space time diffeomorphisms and local frame rotations. The nonperturbative RG equation is solved explicitly on the truncated theory space defined by a three parameter family of Holst-type actions which involve a running Immirzi parameter. We find evidence for the existence of an asymptotically safe fundamental theory, probably inequivalent to metric quantum gravity constructed in the same way.Comment: 5 pages, 1 figur

    Electron-hole pairs during the adsorption dynamics of O2 on Pd(100) - Exciting or not?

    Get PDF
    During the exothermic adsorption of molecules at solid surfaces dissipation of the released energy occurs via the excitation of electronic and phononic degrees of freedom. For metallic substrates the role of the nonadiabatic electronic excitation channel has been controversially discussed, as the absence of a band gap could favour an easy coupling to a manifold of electronhole pairs of arbitrarily low energies. We analyse this situation for the highly exothermic showcase system of molecular oxygen dissociating at Pd(100), using time-dependent perturbation theory applied to first-principles electronic-structure calculations. For a range of different trajectories of impinging O2 molecules we compute largely varying electron-hole pair spectra, which underlines the necessity to consider the high-dimensionality of the surface dynamical process when assessing the total energy loss into this dissipation channel. Despite the high Pd density of states at the Fermi level, the concomitant non-adiabatic energy losses nevertheless never exceed about 5% of the available chemisorption energy. While this supports an electronically adiabatic description of the predominant heat dissipation into the phononic system, we critically discuss the non-adiabatic excitations in the context of the O2 spin transition during the dissociation process.Comment: 20 pages including 7 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.html [added two references, changed V_{fsa} to V_{6D}, modified a few formulations in interpretation of spin asymmetry of eh-spectra, added missing equals sign in Eg.(2.10)

    On the Possibility of Quantum Gravity Effects at Astrophysical Scales

    Get PDF
    The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod. Phys. D special issue on dark matter and dark energ
    corecore