324 research outputs found

    Delayed avalanches in Multi-Pixel Photon Counters

    Full text link
    Hamamatsu Photonics introduced a new generation of their Multi-Pixel Photon Counters in 2013 with significantly reduced after-pulsing rate. In this paper, we investigate the causes of after-pulsing by testing pre-2013 and post-2013 devices using laser light ranging from 405 to 820nm. Doing so we investigate the possibility that afterpulsing is also due to optical photons produced in the avalanche rather than to impurities trapping charged carriers produced in the avalanches and releasing them at a later time. For pre-2013 devices, we observe avalanches delayed by ns to several 100~ns at 637, 777nm and 820 nm demonstrating that holes created in the zero field region of the silicon bulk can diffuse back to the high field region triggering delayed avalanches. On the other hand post-2013 exhibit no delayed avalanches beyond 100~ns at 777nm. We also confirm that post-2013 devices exhibit about 25 times lower after-pulsing. Taken together, our measurements show that the absorption of photons from the avalanche in the bulk of the silicon and the subsequent hole diffusion back to the junction was a significant source of after-pulse for the pre-2013 devices. Hamamatsu appears to have fixed this problem in 2013 following the preliminary release of our results. We also show that even at short wavelength the timing distribution exhibit tails in the sub-nanosecond range that may impair the MPPC timing performances.Comment: Submitted to JINST, 14 pages, 16 figure

    MoRTy: Unsupervised Learning of Task-specialized Word Embeddings by Autoencoding

    Get PDF

    Quantifying Mechanical Properties of Automotive Steels with Deep Learning Based Computer Vision Algorithms

    Get PDF
    This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface

    Increasing Performance and Energy Efficiency of Gas Metal Arc Welding by a High Power Tandem Process

    Get PDF
    Standard Gas Metal Arc Welding (Standard GMAW) and a high power Tandem GMAW (TGMAW) process are evaluated with respect to energy efficiency. Current, voltage and overall equipment power are measured and energy consumption is determined. The new key performance indicator Electrical Deposition Efficiency is introduced to reflect the energy efficiency of GMAW processes. Additionally, wall-plug efficiency of the equipment is determined in order to identify the overall energy consumption. Results show that energy efficiency as well as economic process performance can be significantly increased by application of the TGMAW process. Furthermore findings indicate that wall-plug efficiency of the equipment is independent of power level and material transfer mode. A metal plate of 30 mm thick structural steel is joined by Standard GMAW and TGMAW to demonstrate the total energy savings for a real weld. Electricity consumption is reduced by more than 20% using the high power TGMAW process.DFG, 199828953, SFB 1026: Sustainable Manufacturing - Globale Wertschöpfung nachhaltig gestalte

    Finite element modeling of an alternating current electromagnetic weld pool support in full penetration laser beam welding of thick duplex stainless steel plates

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in M. Bachmann et al., J. Laser Appl. 28, 022404 (2016) and may be found at https://doi.org/10.2351/1.4943906.An electromagnetic weld pool support system for 20 mm thick duplex stainless steel AISI 2205 was investigated numerically and compared to experiments. In our former publications, it was shown how an alternating current (AC) magnetic field below the process zone directed perpendicular to the welding direction can induce vertically directed Lorentz forces. These can counteract the gravitational forces and allow for a suppression of material drop-out for austenitic stainless steels and aluminum alloys. In this investigation, we additionally adopted a steady-state complex magnetic permeability model for the consideration of the magnetic hysteresis behavior due to the ferritic characteristics of the material. The model was calibrated against the Jiles–Atherton model. The material model was also successfully tested against an experimental configuration before welding with a 30 mm diameter cylinder of austenitic stainless steel surrounded by duplex stainless steel. Thereby, the effects of the Curie temperature on the magnetic characteristics in the vicinity of the later welding zone were simulated. The welding process was modeled with a three-dimensional turbulent steady-state model including heat transfer and fluid dynamics as well as the electromagnetic field equations. Main physical effects, the thermo-capillary (Marangoni) convection at the weld pool boundaries, the natural convection due to gravity as well as latent heat of solid–liquid phase transitions at the phase boundaries were accounted for in the model. The feedback of the electromagnetic forces on the weld pool was described in terms of the electromagnetic-induced pressure. The finite element software COMSOL Multiphysics 4.2 was used in this investigation. It is shown that the gravity drop-out associated with the welding of 20 mm thick duplex stainless steel plates due to the hydrostatic pressure can be prevented by the application of AC magnetic fields between around 70 and 90 mT. The corresponding oscillation frequencies were between 1 and 10 kHz and the electromagnetic AC powers were between 1 and 2.3 kW. In the experiments, values of the electromagnetic AC power between 1.6 and 2.4 kW at oscillation frequencies between 1.2 and 2.5 kHz were found to be optimal to avoid melt sagging or drop-out of melt in single pass full-penetration laser beam welding of 15 and 20 mm thick AISI 2205
    • …
    corecore