32 research outputs found

    Water resource monitoring systems and the role of satellite observations

    Get PDF
    Spatial water resource monitoring systems (SWRMS) can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands), and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA) system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as affected by conceptual discrepancies and spatial and temporal scaling

    Use of Gravity Recovery and Climate Experiment terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system

    Get PDF
    Terrestrial water storage (TWS) estimates retrieved from the Gravity Recovery and Climate Experiment (GRACE) satellite mission were compared to TWS modeled by the Australian Water Resources Assessment (AWRA) system. The aim was to test whether differences could be attributed and used to identify model deficiencies. Data for 2003-2010 were decomposed into the seasonal cycle, linear trends and the remaining de-trended anomalies before comparing. AWRA tended to have smaller seasonal amplitude than GRACE. GRACE showed a strong (>15 mm yr -1) drying trend in northwest Australia that was associated with a preceding period of unusually wet conditions, whereas weaker drying trends in the southern Murray Basin and southwest Western Australia were associated with relatively dry conditions. AWRA estimated trends were less negative for these regions, while a more positive trend was estimated for areas affected by cyclone Charlotte in 2009. For 2003-2009, a decrease of 7-8 mm yr -1 (50-60 km 3 yr -1) was estimated from GRACE, enough to explain 6%-7% of the contemporary rate of global sea level rise. This trend was not reproduced by the model. Agreement between model and data suggested that the GRACE retrieval error estimates are biased high. A scaling coefficient applied to GRACE TWS to reduce the effect of signal leakage appeared to degrade quantitative agreement for some regions. Model aspects identified for improvement included a need for better estimation of rainfall in northwest Australia, and more sophisticated treatment of diffuse groundwater discharge processes and surface-groundwater connectivity for some regions

    Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and south and east Asia

    Get PDF
    Precipitation estimates from reanalyses and satellite observations are routinely used in hydrologic applications, but their accuracy is seldom systematically evaluated. This study used high-resolution gauge-only daily precipitation analyses for Australi

    Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and south and east Asia

    Get PDF
    Precipitation estimates from reanalyses and satellite observations are routinely used in hydrologic applications, but their accuracy is seldom systematically evaluated. This study used high-resolution gauge-only daily precipitation analyses for Australia (SILO) and South and East Asia [Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE)] to calculate the daily detection and accuracy metrics for three reanalyses [ECMWF Re-Analysis Interim (ERA-Interim), Japanese 25-yr Reanalysis (JRA-25), and NCEP-Department of Energy (DOE) Global Reanalysis 2] and three satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) 3B42V6, Climate Prediction Center morphing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)]. A depthfrequency- adjusted ensemble mean of the reanalyses and satellite products was also evaluated. Reanalyses precipitation from ERA-Interim in southern Australia (SAu) and northern Australasia (NAu) showed higher detection performance. JRA-25 had a better performance in South and East Asia (SEA) except for the monsoon period, in which satellite estimates from TRMM and CMORPH outperformed the reanalyses. In terms of accuracy metrics (correlation coefficient, root-mean-square difference, and a precipitation intensity proxy, which is the ratio of monthly precipitation amount to total days with precipitation) and over the three subdomains, the depth-frequency-adjusted ensemble mean generally outperformed or was nearly as good as any of the single members. The results of the ensemble show that additional information is captured from the different precipitation products. This finding suggests that, depending on precipitation regime and location, combining (re)analysis and satellite products can lead to better precipitation estimates and, thus,more accurate hydrological applications than selecting any single product

    Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    Get PDF
    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.This research was supported under the Australian Research Council’s Discovery Projects funding scheme (project number DP140103679)

    On the Efficacy of Combining Thermal and Microwave Satellite Data as Observational Constraints for Root-Zone Soil Moisture Estimation

    No full text
    Data assimilation applications require the development of appropriate mathematical operators to relate model states to satellite observations. Two such "observation'' operators were developed and used to examine the conditions under which satellite microwave and thermal observations provide effective constraints on estimated soil moisture. The first operator uses a two-layer surface energy balance (SEB) model to relate root-zone moisture with top-of-canopy temperature. The second couples SEB and microwave radiative transfer models to yield top-of-atmosphere brightness temperature from surface layer moisture content. Tangent linear models for these operators were developed to examine the sensitivity of modeled observations to variations in soil moisture. Assuming a standard deviation in the observed surface temperature of 0.5K and maximal model sensitivity, the error in the analysis moisture content decreased by 11% for a background error of 0.025 m(3) m(-3) and by 29% for a background error of 0.05 m(3) m(-3). As the observation error approached 2 K, the assimilation of individual surface temperature observations provided virtually no constraint on estimates of soil moisture. Given the range of published errors on brightness temperature, microwave satellite observations were always a strong constraint on soil moisture, except under dense forest and in relatively dry soils. Under contrasting vegetation cover and soil moisture conditions, orthogonal information contained in thermal and microwave observations can be used to improve soil moisture estimation because limited constraint afforded by one data type is compensated by strong constraint from the other data type

    Evaluation of alternative model-data fusion approaches for retrospective water balance estimation

    No full text
    Water resources observation and prediction systems are being developed in the Australian Bureau of Meteorology to produce water information services, and will include rolling water balance estimation. A prototype Australian Water Resources Assessment Model (AWRAM) has been developed, and the nationwide coverage, currency, accuracy, and consistency required means that remote sensing plays an important role. This paper tests and discusses alternative methods of blending models and observations. Integration of on-ground and remote sensing data into land surface models typically involves state updating through modeldata assimilation techniques. By comparison, retrospective water balance estimation and hydrological scenario modelling to date has mostly relied on non-sequential parameter estimation against stream flow observations, and has made little use of satellite earth observation. The most appropriate model-data fusion approach for a continental water balance estimation system will need to consider the trade-off between accuracy gains when using more sophisticated synthesis techniques and additional observations, and the computational overheads this incurs. This trade-off was investigated using relatively simple but wellperforming lumped models of seasonal vegetation dynamics and catchment hydrology that are implemented in the prototype AWRAM, while formal inter-comparison experiments to assess alternative component model paradigms and structures are underway. The performance of different model-data fusion (MDF) approaches was evaluated using flux tower ET measurements at four sites in Australia together with satellite observations of soil moisture over the corresponding area (AMSR-E passive microwave instrument). These observations, rather than hydrometric observations (e.g. streamflow), were chosen because of the more direct relationship they have with the site water balance over shorter time scales. Satellite-observed vegetation vigour (MODIS Enhanced Vegetation Index, EVI) was the assimilated variable. The MDF techniques tested include non-sequential estimation of model parameters (calibration against EVI, ET or both) and scaling of rainfall inputs, as well as sequential updating of leaf area index or soil moisture content using the ensemble Kalman filter. Non-sequential parameter estimation did not appear to provide much benefit compared to using prior parameter estimates, suggesting that the model parameterisation was comparatively robust and parameter values spatially invariant, at least when compared to errors in forcing data. A combination of parameter estimation and state updating did lead to improvements in some aspects of evaluation; reducing the apparent error in monthly evapotranspiration by 1% and in monthly top soil moisture content by 12%, respectively, when compared to using a priori parameter estimates. However it was also about three orders of magnitude more computationally intensive. Rainfall input adjustment was only tested in a relatively crude, non-sequential manner but results were encouraging, and appear to be a promising candidate for sequential approaches

    Modelling Within-Season Variation in Light Use Efficiency Enhances Productivity Estimates for Cropland

    No full text
    Gross Primary Productivity (GPP) for cropland is often estimated using a fixed value for maximum light use efficiency (LUEmax) which is reduced to light use efficiency (LUE) by environmental stress scalars. This may not reflect variation in LUE within a crop season, and environmental stress scalars developed for ecosystem scale modelling may not apply linearly to croplands. We predicted LUE on several vegetation indices, crop type, and agroclimatic predictors using supervised random forest regression with training data from flux towers. Using a fixed LUEmax and environmental stress scalars produced an overestimation of GPP with a root mean square error (RMSE) of 6.26 gC/m2/day, while using predicted LUE from random forest regression produced RMSEs of 0.099 and 0.404 gC/m2/day for models with and without crop type as a predictor, respectively. Prediction uncertainty was greater for the model without crop type. These results show that LUE varies between crop type, is dynamic within a crop season, and LUE models that reflect this are able to produce much more accurate estimates of GPP over cropland than using fixed LUEmax with stress scalars. Therefore, we suggest a paradigm shift from setting the LUE variable in cropland productivity models based on environmental stress to focusing more on the variation of LUE within a crop season

    Merging Landsat and airborne LiDAR observations for continuous monitoring of floodplain water extent, depth and volume

    No full text
    The Darling River system in Australia is under pressure from water extraction and climate change. Management interventions such as environmental flow releases require understanding of water storage dynamics and the connectivity of floodplains and wetlands. Such knowledge can be gleaned from the long observational record of the Landsat series of satellite sensors and high (<5 m) resolution digital elevation models derived from airborne light detection and ranging (LiDAR). Here, for the first time, we develop and demonstrate an approach to reconstruct 16-day floodplain water dynamics, including extent, depth, and volume for a long Landsat time series (1987 to present). Time series mapping of surface water extent at 5-m resolution was achieved by topographic downscaling of Landsat-derived surface water data. We propose a simple and effective algorithm to restore missing data in the images caused by, e.g., cloud and shadows, swath edges and the Landsat 7 Scan Line Corrector (SLC) failure, thereby increasing the number of useable images five-fold. The 5-m surface water extent maps clearly delineate the narrow river channel and the boundary of floodplain wetlands. They can capture the development, peak and retreat of flood events. By combining Landsat and airborne LiDAR observations, we produced time series of surface water depth mapping at 5-m resolution, accounting for the degree of hydraulic surface water connectivity. Based on these maps, we derived 16-day floodplain volume dynamics for 1987 to present. The correlation coefficient between upstream river flow records and floodplain volume time series was 0.88, indicating that the estimates were robust. The algorithms developed can be used for ongoing very high-resolution mapping to assist in managing human water use and environmental health in the Murray-Darling Basin
    corecore