9 research outputs found

    Performance Assessment of Bladeless Micro-Expanders Using 3D Numerical Simulation

    Get PDF
    This paper summarizes the development of fully 3D Computational Fluid Dynamics (CFD) analysis for bladeless air micro expander for 200 W and 3 kW rated power. Modelling of nozzle along with rotor is done using structured mesh. This analysis, for the first time, demonstrates the interaction between nozzle and rotor using compressible flow density-based solver. The Shear Stress Transport (SST) turbulence model is employed to resolve wall effects on the rotor and to determine the shear stress accurately. The results illustrate the flow field inside stator and rotor along with complicated mixing zone between stator and rotor. The comparison of rotor-stator CFD simulation results is done with experiments to preliminary validate the model. The losses in the turbine are discussed with the help of experimental and numerical data

    A new design method for two-phase nozzles in high efficiency heat pumps

    No full text
    In this paper an industrially established 1D model for two-phase nozzles design and analysis (Elliott, 1968) has been extended and validated with a wider range of experimental data, focusing on single component two-phase fluid expansion from initial quality in the 0%\u201325% range. The Authors focused on the correlations of the gas-liquid slip velocity and wall friction for two-flow regimes. The upgraded model has been tested on a converging nozzle showing accurate results under subcritical conditions (Ma<1). Furthermore, simulations have also been carried out on a convergent-divergent nozzle, concentrating on the diverging part at Ma>1, demonstrating that the new model obtained a significant reduction in error compared to the original Elliott model and to the well-known isentropic homogeneous approach (IHE). The extended model was also tested on a convergent-divergent nozzle produced by Carrier Corporation for the 19-XRT chiller, obtaining a satisfactory performance prediction. The validation process allowed to assess the limits of validity of the new model, which can be effectively used as design tool for subsonic or supersonic two-phase nozzles. In particular, the model capability to identify critical mass flow and critical expansion ratio has been investigated, showing good match for the critical expansion ratio, while margins of improvement remain for the critical mass flow prediction

    A REVIEW OF PRESSURE GAIN COMBUSTION SOLUTIONS FOR AEROSPACE PROPULSION

    No full text
    Recent developments in Pressure Gain Combustion (PGC) technology have demonstrated its ability to achieve higher thermal efficiencies and lower carbon emissions as compared to conventional gas turbine counterpart working in Brayton cycle. Ongoing studies suggest the possibility of implementing PGC in aircraft engines by replacing the high-pressure section (HP compressor, combustion chamber and HP turbine) with a PGC system. This, coupled with research on advanced materials and cooling solutions, offers the potential for higher overall gas turbine efficiency and fuel economy, contributing towards emission reduction of the aviation sector. This paper aims at a comprehensive review of PGC technology solutions applied in the area of aero propulsion. Reported background covers the historic as well as ongoing research activities at the component level, the cycle level, and the propulsion application of Pulse Detonation Engine (PDE), Rotating Detonation Engine (RDE), Oblique Detonation Wave Engine (ODWE), Free Piston Composite Cycle Engine (FP-CCE), and wave rotor engines. The analytical, numerical, and experimental research work is reviewed, providing also a comparison of PGC engine conceptual designs with existing gas turbine engines used in aerospace propulsion

    Experimental investigation on a 3 KW air tesla expander with high speed generator

    No full text
    Tesla bladeless turbomachines are recently being investigated due to many advantages such as its simple design and ease of manufacturing. If an efficient design is achieved, this will be a promising machine in the area of small-scale power generation and energy harvesting. This paper focuses on the experimental performance investigation of 3 kW (rated power) Tesla bladeless expander. The Tesla expander and electric generator are housed in a single casing making it first of its kind being tested with such configuration. The expander is fed with air and operated at high rotational speeds up to 40000 rpm. The test is carried out with different number of nozzles to understand its effect on the performance. Results show that the peak efficiency for two nozzles is better than one nozzle and four nozzle configurations for the same inlet pressure conditions. Experimental tests revealed that this turbine is most efficient Tesla turbine till now with air as a working fluid. Furthermore, one of the most important losses in Tesla turbomachines, nozzle loss, is experimentally characterized. Specific vibrational tests were carried out to obtain complete machine dynamical characterization. The vibrational response characterization of the turbine enabled us to recognize a disk mode family solicited by the air flow and to perform a proper machine maintenance and balancing aiming to reduce the energy of its operational vibration

    Performance Investigation of a Bladeless Air Compressor

    No full text
    This study aims to investigate the reversible operation of a bladeless air expander prototype operated reversibly in compressor mode to understand the performance by numerical method and compare its results experimentally. A bladeless machine can reverse its operation by simply inverting the rotational speed. However, expander and compressor performance may differ significantly since losses are exacerbated in the compressor mode. The prototype was previously tested as an expander (experimental highest isentropic efficiency of 36.5%). In this work, the reverse mode is discussed, when the prototype is actuated as a compressor, with and without diffuser at variable rotational speeds. In compressor mode, the fluid enters through the center axially, passes radially outwards through disk gaps, and exits throughout the diffuser. The momentum transfer and pressure gain are carried out by the shear force produced on the surface of the rotating disk. An experimental/theoretical analysis focused on the pressure ratio, mass flow, and efficiency of bladeless compressor is conducted. High losses (main leakage across the rotor) were noticed during the experiments, affecting the overall Tesla compressor performance. Numerical calculations are carried out to estimate leakage losses by comparison with experimental results. It is shown that the original expander design would require specific modifications to reduce end disk leakages, which are higher in compressor mode than in expansion mode, significantly affecting the elaborated net mass flow. Improved diffuser, scroll, disk end gaps, and sealing mechanisms are discussed in order to augment overall performance of the bladeless prototype in compressor mode
    corecore