12 research outputs found

    Maternal inflammatory, lipid and metabolic markers and associations with birth and breastfeeding outcomes

    Get PDF
    BackgroundConditions in utero influence intrauterine and postnatal infant growth and a few studies indicate that maternal inflammation and insulin resistance might affect birth and breastfeeding outcomes. Furthermore, hormones in human milk (HM) may influence infant appetite-regulation and thereby milk intake, but the associations are less understood.Objective(1) To investigate associations between maternal inflammatory, lipid and metabolic markers and birth and breastfeeding outcomes, and (2) to assess predictors of maternal inflammatory, lipid and metabolic markers in pregnancy.MethodsSeventy-one mother-infant dyads participating in the Mothers, Infants and Lactation Quality (MILQ) study were included in the present study. Fasting blood samples were collected around 28th gestational week, and HM samples at three time points from 1.0 to 8.5 months, where milk intake was assessed using 24-h test weighing. Maternal plasma inflammatory, lipid and metabolic markers included high-sensitive C-reactive protein (hs-CRP), tumor-necrosis factor-α (TNFα), interferon-γ (IFNγ), Interleukin (IL)-6, IL-8, high-, low-, and very-low-density lipoprotein (HDL, LDL, VLDL), total-cholesterol, triglycerides, leptin, adiponectin, insulin, C-peptide, the homeostasis model assessment of insulin resistance (HOMA-IR) and glucose concentration at t = 120 min following an oral glucose tolerance test. Of these, TNFα, IFNγ, IL-6, IL-8, leptin, adiponectin and insulin were also measured in HM samples.ResultsHDL in pregnancy was inversely associated with gestational age (GA) at birth and GA-adjusted birthweight z-score, whereas triglycerides and glucose (t = 120) were positively associated with GA-adjusted birthweight z-score. Higher hs-CRP, VLDL and triglycerides were associated with a higher placental weight. Furthermore, higher HDL, insulin, leptin and HOMA-IR were associated with longer duration of exclusive breastfeeding (EBF). Higher pre-pregnancy BMI was the main predictor of higher levels of hs-CRP, log-TNFα, leptin, insulin, C-peptide, and HOMA-IR.ConclusionMaternal lipid and metabolic markers influenced birthweight z-score and placental weight as well as duration of EBF. Furthermore, pre-pregnancy BMI and maternal age predicted levels of several inflammatory and metabolic markers during pregnancy. Our findings indicate that maternal lipid and metabolic profiles in pregnancy may influence fetal growth and breastfeeding, possibly explained by overweight and/or higher placental weight.Clinical trial registrationhttps://clinicaltrials.gov/, identifier NCT03254329

    Birthweight z-score and fat-free mass at birth predict body composition at 3 years in Danish children born from obese mothers

    No full text
    AIM: We investigated associations between newborn body composition and anthropometry and body composition at 3 years in Danish children born from obese mothers. METHODS: Analyses are based on data from the observational cohort study SKOT II (SKOT; small children's diet and well‐being (Danish)). Body composition at birth and at 3 years was assessed by dual‐energy X‐ray absorptiometry (DXA) scans and bioelectrical impedance analysis (BIA), respectively. Multiple linear regression models were applied to determine associations between newborn body composition and anthropometry and body composition at 3 years. RESULTS: Birthweight z‐score (BWZ) was positively associated with fat‐free mass (FFM), height, fat‐free mass index (FFMI), fat mass (FM) and fat mass index (FMI) at 3 years. Newborn FFM was positively associated with FFM, height, FFMI and FM at 3 years, and positive trends were seen between newborn FM and FM and FMI at 3 years. CONCLUSION: We showed that infants born with a higher BWZ go on to be taller at 3 years. They also grow to be heavier, to which FM and FFM both contribute, independently of linear growth. Additionally, it seems that FFM tracks into early childhood, thus supporting intrauterine programming of later health

    Newborn body composition after maternal bariatric surgery.

    No full text
    INTRODUCTION:In pregnancy after Roux-en-Y gastric bypass (RYGB), there is increased risk of low birthweight in the offspring. The present study examined how offspring body composition was affected by RYGB. MATERIAL AND METHODS:Mother-newborn dyads, where the mothers had undergone RYGB were included. Main outcome measure was neonatal body composition. Neonatal body composition was assessed by dual-energy X-ray absorptiometry scanning (DXA) within 48 hours after birth. In a statistical model offspring born after RYGB were compared with a reference material of offspring and analyses were made to estimate the effect of maternal pre-pregnancy body mass index (BMI), gestational weight gain, parity, gestational age at birth and newborn sex on newborn body composition. Analyses were made to estimate the impact of maternal weight loss before pregnancy and of other effects of bariatric surgery respectively. The study was performed at a university hospital between October 2012 and December 2013. RESULTS:We included 25 mother-newborn dyads where the mothers had undergone RYGB and compared them to a reference material of 311 mother-newborn dyads with comparable pre-pregnancy BMI. Offspring born by mothers after RYGB had lower birthweight (335g, p<0.001), fat-free mass (268g, p<0.001) and fat% (2.8%, p<0.001) compared with reference material. Only 2% of the average reduction in newborn fat free mass could be attributed to maternal pre-pregnancy weight loss whereas other effects of RYGB accounted for 98%. Regarding reduction in fat mass 52% was attributed to weight loss and 47% to other effects of surgery. CONCLUSION:Offspring born after maternal bariatric surgery, had lower birthweight, fat-free mass and fat percentage when compared with a reference material. RYGB itself and not the pre-pregnancy weight loss seems to have had the greatest impact on fetal growth
    corecore