45 research outputs found

    SBNet: Sparse Blocks Network for Fast Inference

    Full text link
    Conventional deep convolutional neural networks (CNNs) apply convolution operators uniformly in space across all feature maps for hundreds of layers - this incurs a high computational cost for real-time applications. For many problems such as object detection and semantic segmentation, we are able to obtain a low-cost computation mask, either from a priori problem knowledge, or from a low-resolution segmentation network. We show that such computation masks can be used to reduce computation in the high-resolution main network. Variants of sparse activation CNNs have previously been explored on small-scale tasks and showed no degradation in terms of object classification accuracy, but often measured gains in terms of theoretical FLOPs without realizing a practical speed-up when compared to highly optimized dense convolution implementations. In this work, we leverage the sparsity structure of computation masks and propose a novel tiling-based sparse convolution algorithm. We verified the effectiveness of our sparse CNN on LiDAR-based 3D object detection, and we report significant wall-clock speed-ups compared to dense convolution without noticeable loss of accuracy.Comment: 10 pages, CVPR 201

    BIM: Block-Wise Self-Supervised Learning with Masked Image Modeling

    Full text link
    Like masked language modeling (MLM) in natural language processing, masked image modeling (MIM) aims to extract valuable insights from image patches to enhance the feature extraction capabilities of the underlying deep neural network (DNN). Contrasted with other training paradigms like supervised learning and unsupervised contrastive learning, masked image modeling (MIM) pretraining typically demands significant computational resources in order to manage large training data batches (e.g., 4096). The significant memory and computation requirements pose a considerable challenge to its broad adoption. To mitigate this, we introduce a novel learning framework, termed~\textit{Block-Wise Masked Image Modeling} (BIM). This framework involves decomposing the MIM tasks into several sub-tasks with independent computation patterns, resulting in block-wise back-propagation operations instead of the traditional end-to-end approach. Our proposed BIM maintains superior performance compared to conventional MIM while greatly reducing peak memory consumption. Moreover, BIM naturally enables the concurrent training of numerous DNN backbones of varying depths. This leads to the creation of multiple trained DNN backbones, each tailored to different hardware platforms with distinct computing capabilities. This approach significantly reduces computational costs in comparison with training each DNN backbone individually. Our framework offers a promising solution for resource constrained training of MIM

    LifelongMemory: Leveraging LLMs for Answering Queries in Long-form Egocentric Videos

    Full text link
    In this paper we introduce LifelongMemory, a new framework for accessing long-form egocentric videographic memory through natural language question answering and retrieval. LifelongMemory generates concise video activity descriptions of the camera wearer and leverages the zero-shot capabilities of pretrained large language models to perform reasoning over long-form video context. Furthermore, Lifelong Memory uses a confidence and explanation module to produce confident, high-quality, and interpretable answers. Our approach achieves state-of-the-art performance on the EgoSchema benchmark for question answering and is highly competitive on the natural language query (NLQ) challenge of Ego4D. Code is available at https://github.com/Agentic-Learning-AI-Lab/lifelong-memory
    corecore