30,722 research outputs found

    Distributed Adaptive Attitude Synchronization of Multiple Spacecraft

    Full text link
    This paper addresses the distributed attitude synchronization problem of multiple spacecraft with unknown inertia matrices. Two distributed adaptive controllers are proposed for the cases with and without a virtual leader to which a time-varying reference attitude is assigned. The first controller achieves attitude synchronization for a group of spacecraft with a leaderless communication topology having a directed spanning tree. The second controller guarantees that all spacecraft track the reference attitude if the virtual leader has a directed path to all other spacecraft. Simulation examples are presented to illustrate the effectiveness of the results.Comment: 13 pages, 11 figures. To appear in SCIENCE CHINA Technological Science

    A Forward-Looking Nash Game and Its Application to Achieving Pareto-Efficient Optimization

    Get PDF
    Recognizing the fact that a player’s cognition plays a defining role in the resulting equilibrium of a game of competition, this paper provides the foundation for a Nash game with forward-looking players by presenting a formal definition of the Nash game with consideration of the players’ belief. We use a simple two-firm model to demonstrate its fundamental difference from the standard Nash and Stackelberg games. Then we show that the players’ belief functions can be regarded as the optimization parameters for directing the game towards a much more desirable equilibrium

    Theory of Interfacial Plasmon-Phonon Scattering in Supported Graphene

    Full text link
    One of the factors limiting electron mobility in supported graphene is remote phonon scattering. We formulate the theory of the coupling between graphene plasmon and substrate surface polar phonon (SPP) modes, and find that it leads to the formation of interfacial plasmon-phonon (IPP) modes, from which the phenomena of dynamic anti-screening and screening of remote phonons emerge. The remote phonon-limited mobilities for SiO2_{2}, HfO2_{2}, h-BN and Al2_{2}O3_{3} substrates are computed using our theory. We find that h-BN yields the highest peak mobility, but in the practically useful high-density range the mobility in HfO2_{2}-supported graphene is high, despite the fact that HfO2_{2} is a high-Îş\kappa dielectric with low-frequency modes. Our theory predicts that the strong temperature dependence of the total mobility effectively vanishes at very high carrier concentrations. The effects of polycrystallinity on IPP scattering are also discussed.Comment: 33 pages, 7 figure

    Improved superlensing in two-dimensional photonic crystals with a basis

    Full text link
    We study propagation of light in square and hexagonal two-dimensional photonic crystals. We show, that slabs of these crystals focus light with subwavelength resolution. We propose a systematic way to increase this resolution, at an essentially fixed frequency, by employing a hierarchy of crystals of the same structure, and the same lattice constant, but with an increasingly complex basis.Comment: 16 Pages, 5 Figure

    Electronic states and pairing symmetry in the two-dimensional 16 band d-p model for iron-based superconductor

    Full text link
    The electronic states of the FeAs plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model, where the tight-binding parameters are determined so as to fit the band structure obtained by the density functional calculation for LaFeAsO. The model includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the exchange coupling J and the pair-transfer J'. Within the random phase approximation (RPA), we discuss the pairing symmetry of possible superconducting states including s-wave and d-wave pairing on the U'-J plane.Comment: 2 pages, 4 figures; Proceedings of the Int. Symposium on Fe-Oxipnictide Superconductors (Tokyo, 28-29th June 2008

    Spin Fluctuations and Unconventional Superconductivity in the Fe-based Oxypnictide Superconductor LaFeAsO_0.7 probed by 57Fe-NMR

    Full text link
    We report 57^{57}Fe-NMR studies on the oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO0.7_{0.7} (Tc=T_{c}= 28 K) enriched by 57^{57}Fe isotope. In the superconducting state, the spin component of 57^{57}Fe-Knight shift 57K^{57}K decreases almost to zero at low temperatures and the nuclear spin-lattice relaxation rate 57(1/T1)^{57}(1/T_{1}) exhibits a T3T^{3}-like dependence without the coherence peak just below TcT_{c}, which give firm evidence of the unconventional superconducting state formed by spin-singlet Cooper pairing. All these events below TcT_c are consistently argued in terms of the extended s±_{\pm}-wave pairing with a sign reversal of the order parameter among Fermi surfaces. In the normal state, we found the remarkable decrease of 1/T1T1/T_1T upon cooling for both the Fe and As sites, which originates from the decrease of low-energy spectral weight of spin fluctuations over whole q{\bm q} space upon cooling below room temperature. Such behavior has never been observed for other strongly correlated superconductors where an antiferromagnetic interaction plays a vital role in mediating the Cooper pairing.Comment: 4 pages, 4 figures,Accepted for publication in J. Phys. Soc. Jpn., vol.78, No.1 (2009
    • …
    corecore