288 research outputs found

    Online brand communities: when consumers are negatively engaged

    Get PDF
    The goal of the current research is to explore the influence of negative engagement on committing participants in hate online brand communities. To reach this aim, three brands are used to assess this phenomenon (Starbucks, Apple, and McDonald’s), and three related hate online brand communities of such brands are involved. An online questionnaire is developed based on previously validated scales and fulfilled by 300 online members of mentioned communities. Findings reveal the importance of Brand influence, Helping, and Self-expression dimensions on participants to be committed to hating brand communities.info:eu-repo/semantics/acceptedVersio

    Genomic analysis of venous thrombosis in children with acute lymphoblastic leukemia from diverse ancestries

    Get PDF
    Venous thrombosis is a common adverse effect of modern therapy for acute lymphoblastic leukemia (ALL). Prior studies to identify risks of thrombosis in pediatric ALL have been limited by genetic screens of pre-identified genetic variants or genome- wide association studies (GWAS) in ancestrally uniform populations. To address this, we performed a retrospective cohort evaluation of thrombosis risk in 1,005 children treated for newly diagnosed ALL. Genetic risk factors were comprehensively evaluated from genome-wide single nucleotide polymorphism (SNP) arrays and were evaluated using Cox regression adjusting for identified clinical risk factors and genetic ancestry. The cumulative incidence of thrombosis was 7.8%. In multivariate analysis, older age, T-lineage ALL, and non-O blood group were associated with increased thrombosis while non-low-risk treatment and higher presenting white blood cell count trended toward increased thrombosis. No SNP reached genome-wide significance. The SNP most strongly associated with thrombosis was rs2874964 near RFXAP (G risk allele; P=4x10-7; hazard ratio [HR] =2.8). In patients of non-European ancestry, rs55689276 near the α globin cluster (P=1.28x10-6; HR=27) was most strongly associated with thrombosis. Among GWAS catalogue SNP reported to be associated with thrombosis, rs2519093 (T risk allele, P=4.8x10-4; HR=2.1), an intronic variant in ABO, was most strongly associated with risk in this cohort. Classic thrombophilia risks were not associated with thrombosis. Our study confirms known clinical risk features associated with thrombosis risk in children with ALL. In this ancestrally diverse cohort, genetic risks linked to thrombosis risk aggregated in erythrocyte-related SNP, suggesting the critical role of this tissue in thrombosis risk

    Ex vivo Drug Sensitivity Imaging-based Platform for Primary Acute Lymphoblastic Leukemia Cells

    Get PDF
    Resistance of acute lymphoblastic leukemia (ALL) cells to chemotherapy, whether present at diagnosis or acquired during treatment, is a major cause of treatment failure. Primary ALL cells are accessible for drug sensitivity testing at the time of new diagnosis or at relapse, but there are major limitations with current methods for determining drug sensitivity ex vivo. Here, we describe a functional precision medicine method using a fluorescence imaging platform to test drug sensitivity profiles of primary ALL cells. Leukemia cells are co-cultured with mesenchymal stromal cells and tested with a panel of 40 anti-leukemia drugs to determine individual patterns of drug resistance and sensitivity (“pharmacotype”). This imaging-based pharmacotyping assay addresses the limitations of prior ex vivo drug sensitivity methods by automating data analysis to produce high-throughput data while requiring fewer cells and significantly decreasing the labor-intensive time required to conduct the assay. The integration of drug sensitivity data with genomic profiling provides a basis for rational genomics-guided precision medicine. Key features Analysis of primary acute lymphoblastic leukemia (ALL) blasts obtained at diagnosis from bone marrow aspirate or peripheral blood. Experiments are performed ex vivo with mesenchymal stromal cell co-culture and require four days to complete. This fluorescence imaging–based protocol enhances previous ex vivo drug sensitivity assays and improves efficiency by requiring fewer primary cells while increasing the number of drugs tested to 40. It takes approximately 2–3 h for sample preparation and processing and a 1.5-hour imaging time

    Ex vivo Drug Sensitivity Imaging-based Platform for Primary Acute Lymphoblastic Leukemia Cells

    Get PDF
    Resistance of acute lymphoblastic leukemia (ALL) cells to chemotherapy, whether present at diagnosis or acquired during treatment, is a major cause of treatment failure. Primary ALL cells are accessible for drug sensitivity testing at the time of new diagnosis or at relapse, but there are major limitations with current methods for determining drug sensitivity ex vivo. Here, we describe a functional precision medicine method using a fluorescence imaging platform to test drug sensitivity profiles of primary ALL cells. Leukemia cells are co-cultured with mesenchymal stromal cells and tested with a panel of 40 anti-leukemia drugs to determine individual patterns of drug resistance and sensitivity ("pharmacotype"). This imaging-based pharmacotyping assay addresses the limitations of prior ex vivo drug sensitivity methods by automating data analysis to produce high-throughput data while requiring fewer cells and significantly decreasing the labor-intensive time required to conduct the assay. The integration of drug sensitivity data with genomic profiling provides a basis for rational genomics-guided precision medicine. Key features Analysis of primary acute lymphoblastic leukemia (ALL) blasts obtained at diagnosis from bone marrow aspirate or peripheral blood. Experiments are performed ex vivo with mesenchymal stromal cell co-culture and require four days to complete. This fluorescence imaging-based protocol enhances previous ex vivo drug sensitivity assays and improves efficiency by requiring fewer primary cells while increasing the number of drugs tested to 40. It takes approximately 2-3 h for sample preparation and processing and a 1.5-hour imaging time. Graphical overview

    Investigation of Inherited Noncoding Genetic Variation Impacting the Pharmacogenomics of Childhood Acute Lymphoblastic Leukemia Treatment

    Get PDF
    Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents

    Epigenomic Mapping Reveals Distinct B Cell Acute Lymphoblastic Leukemia Chromatin Architectures and Regulators

    Get PDF
    B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks

    The challenge to verify ceramide's role of apoptosis induction in human cardiomyocytes - a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardioplegia and reperfusion of the myocardium may be associated with cardiomyocyte apoptosis and subsequent myocardial injury. In order to establish a pharmacological strategy for the prevention of these events, this study aimed to verify the reliability of our human cardiac model and to evaluate the pro-apoptotic properties of the sphingolipid second messenger ceramide and the anti-apoptotic properties of the acid sphingomyelinase inhibitor amitryptiline during simulated cardioplegia and reperfusion ex vivo.</p> <p>Methods</p> <p>Cardiac biopsies were retrieved from the right auricle of patients undergoing elective CABG before induction of cardiopulmonary bypass. Biopsies were exposed to <it>ex vivo </it>conditions of varying periods of cp/rep (30/10, 60/20, 120/40 min). Groups: I (untreated control, n = 10), II (treated control cp/rep, n = 10), III (cp/rep + ceramide, n = 10), IV (cp/rep + amitryptiline, n = 10) and V (cp/rep + ceramide + amitryptiline, n = 10). For detection of apoptosis anti-activated-caspase-3 and PARP-1 cleavage immunostaining were employed.</p> <p>Results</p> <p>In group I the percentage of apoptotic cardiomyocytes was significantly (p < 0.05) low if compared to group II revealing a time-dependent increase. In group III ceramid increased and in group IV amitryptiline inhibited apoptosis significantly (p < 0.05). In contrast in group V, under the influence of ceramide and amitryptiline the induction of apoptosis was partially suppressed.</p> <p>Conclusion</p> <p>Ceramid induces and amitryptiline suppresses apoptosis significantly in our ex vivo setting. This finding warrants further studies aiming to evaluate potential beneficial effects of selective inhibition of apoptosis inducing mediators on the suppression of ischemia/reperfusion injury in clinical settings.</p

    Modeling Mechanisms of In Vivo Variability in Methotrexate Accumulation and Folate Pathway Inhibition in Acute Lymphoblastic Leukemia Cells

    Get PDF
    Methotrexate (MTX) is widely used for the treatment of childhood acute lymphoblastic leukemia (ALL). The accumulation of MTX and its active metabolites, methotrexate polyglutamates (MTXPG), in ALL cells is an important determinant of its antileukemic effects. We studied 194 of 356 patients enrolled on St. Jude Total XV protocol for newly diagnosed ALL with the goal of characterizing the intracellular pharmacokinetics of MTXPG in leukemia cells; relating these pharmacokinetics to ALL lineage, ploidy and molecular subtype; and using a folate pathway model to simulate optimal treatment strategies. Serial MTX concentrations were measured in plasma and intracellular MTXPG concentrations were measured in circulating leukemia cells. A pharmacokinetic model was developed which accounted for the plasma disposition of MTX along with the transport and metabolism of MTXPG. In addition, a folate pathway model was adapted to simulate the effects of treatment strategies on the inhibition of de novo purine synthesis (DNPS). The intracellular MTXPG pharmacokinetic model parameters differed significantly by lineage, ploidy, and molecular subtypes of ALL. Folylpolyglutamate synthetase (FPGS) activity was higher in B vs T lineage ALL (p<0.005), MTX influx and FPGS activity were higher in hyperdiploid vs non-hyperdiploid ALL (p<0.03), MTX influx and FPGS activity were lower in the t(12;21) (ETV6-RUNX1) subtype (p<0.05), and the ratio of FPGS to Îł-glutamyl hydrolase (GGH) activity was lower in the t(1;19) (TCF3-PBX1) subtype (p<0.03) than other genetic subtypes. In addition, the folate pathway model showed differential inhibition of DNPS relative to MTXPG accumulation, MTX dose, and schedule. This study has provided new insights into the intracellular disposition of MTX in leukemia cells and how it affects treatment efficacy
    • …
    corecore