10,922 research outputs found
Renormalized mean-field analysis of antiferromagnetism and d-wave superconductivity in the two-dimensional Hubbard model
We analyze the competition between antiferromagnetism and superconductivity
in the two-dimensional Hubbard model by combining a functional renormalization
group flow with a mean-field theory for spontaneous symmetry breaking.
Effective interactions are computed by integrating out states above a scale
Lambda_{MF} in one-loop approximation, which captures in particular the
generation of an attraction in the d-wave Cooper channel from fluctuations in
the particle-hole channel. These effective interactions are then used as an
input for a mean-field treatment of the remaining low-energy states, with
antiferromagnetism, singlet superconductivity and triplet pi-pairing as the
possible order parameters. Antiferromagnetism and superconductivity suppress
each other, leaving only a small region in parameter space where both orders
can coexist with a sizable order parameter for each. Triplet pi-pairing appears
generically in the coexistence region, but its feedback on the other order
parameters is very small.Comment: 28 pages, 14 figure
The pyroelectric properties of TGS for application in infrared detection
The pyroelectric property of triglycine sulfate and its application in the detection of infrared radiation are described. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area
<i>In Situ</i> Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions
During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (~46.5% and ~61% of all particles; ~76.5 wt % and ~89 wt % of the relative particle load). Furthermore, ~69% and ~82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of ‘‘sand skirts.’’ Both sampled dust devils were relatively small (~15m and ~4–5m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ~58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 mm, depending on the used grain size classification). This relatively high amount represents only ~0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected
Sculplexity: Sculptures of Complexity using 3D printing
We show how to convert models of complex systems such as 2D cellular automata
into a 3D printed object. Our method takes into account the limitations
inherent to 3D printing processes and materials. Our approach automates the
greater part of this task, bypassing the use of CAD software and the need for
manual design. As a proof of concept, a physical object representing a modified
forest fire model was successfully printed. Automated conversion methods
similar to the ones developed here can be used to create objects for research,
for demonstration and teaching, for outreach, or simply for aesthetic pleasure.
As our outputs can be touched, they may be particularly useful for those with
visual disabilities.Comment: Free access to article on European Physics Letter
Estimation of an initial condition of sigma-delta modulators via projection onto convex sets
Abstract—In this paper, an initial condition of strictly causal
rational interpolative sigma-delta modulators (SDMs) is
estimated based on quantizer output bit streams and an input
signal. A set of initial conditions generating bounded trajectories
is characterized. It is found that a set of initial conditions
generating bounded trajectories but not necessarily
corresponding to quantizer output bit streams is convex. Also, it is
found that a set of initial conditions corresponding to quantizer
output bit streams but not necessarily generating bounded
trajectories is convex too. Moreover, it is found that an initial
condition both corresponding to quantizer output bit streams and
generating bounded trajectories is uniquely defined if the loop
filter is unstable (Here, an unstable loop filter refers to that with
at least one of its poles being strictly outside the unit circle). To
estimate that unique initial condition, a projection onto convex set
approach is employed. Numerical computer simulations show that
the employed method can estimate the initial condition effectively
Fuzzy impulsive control of high order interpolative lowpass sigma delta modulators
In this paper, a fuzzy impulsive control strategy is proposed. The state vectors that the impulsive controller resets to are determined so that the state vectors of interpolative low-pass sigma-delta modulators (SDMs) are bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are, the occurrence of limit cycle behaviors and the effect of audio clicks are minimized, as well as the state vectors are close to the invariant set if it exists. To work on this problem, first, the local stability criterion and the condition for the occurrence of limit cycle behaviors are derived. Second, based on the derived conditions, as well as a practical consideration based on the boundedness of the state variables and a heuristic measure on the strength of audio clicks, fuzzy membership functions and a fuzzy impulsive control law are formulated. The controlled state vectors are then determined by solving the fuzzy impulsive control law. One of the advantages of the fuzzy impulsive control strategy over the existing linear control strategies is the robustness to the input signal, the initial condition and the filter parameters, and that over the existing nonlinear control strategy are the efficiency and the effectiveness in terms of lower frequency of applying the control force and higher signal-to-noise ratio (SNR) performanc
Difference between irregular chaotic patterns of second-order double-loop ΣΔ modulators and second-order interpolative bandpass ΣΔ modulators
In this paper, we find that, by computing the difference between two consecutive state vectors of second-order double-loop sigma-delta modulators (SDMs) and plotting one component of the subtracted vectors against the other component, irregular chaotic patterns will become two vertical lines. By multiplying a matrix on the subtracted vectors, it can be further transformed to two fixed points. However, second-order interpolative bandpass SDMs still exhibit chaotic behaviors after applying the same transformations. Moreover, it is found that the Lyapunov exponent of state vectors of second-order double-loop SDMs is higher than that of second-order interpolative bandpass SDMs, whereas the Lyapunov exponent of transformed vectors becomes negative infinity for second-order double-loop SDMs and increases for second-order interpolative bandpass SDMs. Hence, by examining the occurrence of chaotic behaviors of the transformed vectors of these two SDMs, these two SDMs can be distinguished from their state vectors and their transformed vectors without solving the state equations and knowing the information of input signals
Method and apparatus for shaping and enhancing acoustical levitation forces
A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described
- …