32 research outputs found
Hypomethylation of HOXA4 promoter is common in Silver-Russell syndrome and growth restriction and associates with stature in healthy children
Silver-Russell syndrome (SRS) is a growth retardation syndrome in which loss of methylation on chromosome 11p15 (11p15 LOM) and maternal uniparental disomy for chromosome 7 [UPD(7) mat] explain 20-60% and 10% of the syndrome, respectively. To search for a molecular cause for the remaining SRS cases, and to find a possible common epigenetic change, we studied DNA methylation pattern of more than 450 000 CpG sites in 44 SRS patients. Common to all three SRS subgroups, we found a hypomethylated region at the promoter region of HOXA4 in 55% of the patients. We then tested 39 patients with severe growth restriction of unknown etiology, and found hypomethylation of HOXA4 in 44% of the patients. Finally, we found that methylation at multiple CpG sites in the HOXA4 promoter region was associated with height in a cohort of 227 healthy children, suggesting that HOXA4 may play a role in regulating human growth by epigenetic mechanisms.Peer reviewe
Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility
WOS:000306806600056Peer reviewe
Amino Acid Signatures to Evaluate the Beneficial Effects of Weight Loss
Aims. We investigated the relationship between circulating amino acid levels and obesity; to what extent weight loss followed by weight maintenance can correct amino acid abnormalities; and whether amino acids are related to weight loss. Methods:. Amino acids associated with waist circumference (WC) and BMI were studied in 804 participants from the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC). Changes in amino acid levels were analyzed after weight loss and weight maintenance in 12 obese subjects and evaluated in a replication cohort (n = 83). Results:. Out of the eight identified BMI-associated amino acids from the MDC-CC, alanine, isoleucine, tyrosine, phenylalanine, and glutamate decreased after weight loss, while asparagine increased after weight maintenance. These changes were validated in the replication cohort. Scores that were constructed based on obesity-associated amino acids and known risk factors decreased in the ≥10% weight loss group with an associated change in BMI (R2 = 0.16–0.22, p < 0.002), whereas the scores increased in the <10% weight loss group (p < 0.0004). Conclusions:. Weight loss followed by weight maintenance leads to differential changes in amino acid levels associated with obesity. Treatment modifiable scores based on epidemiological and interventional data may be used to evaluate the potential metabolic benefit of weight loss
Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes
Abstract
Background
Age-related changes in DNA methylation occurring in blood leukocytes during early childhood may reflect epigenetic maturation. We hypothesized that some of these changes involve gene networks of critical relevance in leukocyte biology and conducted a prospective study to elucidate the dynamics of DNA methylation. Serial blood samples were collected at 3, 6, 12, 24, 36, 48 and 60 months after birth in ten healthy girls born in Finland and participating in the Type 1 Diabetes Prediction and Prevention Study. DNA methylation was measured using the HumanMethylation450 BeadChip.
Results
After filtering for the presence of polymorphisms and cell-lineage-specific signatures, 794 CpG sites showed significant DNA methylation differences as a function of age in all children (41.6% age-methylated and 58.4% age-demethylated, Bonferroni-corrected P value <0.01). Age-methylated CpGs were more frequently located in gene bodies and within +5 to +50 kilobases (kb) of transcription start sites (TSS) and enriched in developmental, neuronal and plasma membrane genes. Age-demethylated CpGs were associated to promoters and DNAse-I hypersensitivity sites, located within −5 to +5 kb of the nearest TSS and enriched in genes related to immunity, antigen presentation, the polycomb-group protein complex and cytoplasm.
Conclusions
This study reveals that susceptibility loci for complex inflammatory diseases (for example, IRF5, NOD2, and PTGER4) and genes encoding histone modifiers and chromatin remodeling factors (for example, HDAC4, KDM2A, KDM2B, JARID2, ARID3A, and SMARCD3) undergo DNA methylation changes in leukocytes during early childhood. These results open new perspectives to understand leukocyte maturation and provide a catalogue of CpG sites that may need to be corrected for age effects when performing DNA methylation studies in children
DNA methylation in childhood asthma : an epigenome-wide meta-analysis
Background DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. Methods We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. Findings 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p Interpretation Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context.Peer reviewe
Differentially methylated probes for each cell population in comparison to whole blood.
<p>PBMC-Peripheral blood mononuclear cells. Differentially methylated probes were defined by a linear model using the M-values. M-value is the log2 ratio of the intensities of methylated probe versus unmethylated probe, a measurement of how much more a probe is methylated compared to unmethylated <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0041361#pone.0041361-Du2" target="_blank">[46]</a>. *To extract the probes with largest difference in methylation, a gamma fit model was applied to M-values in order to define the three calls: “unmethylated”, “marginal” and “methylated”. Significant probes sharing the same call in the two compared populations were removed. **Variation is based on the estimate of the log2-fold-change corresponding to the effect obtained from the linear model, absolute M-values are presented. The percentages are based on the call distribution.</p