10 research outputs found
Liver biopsy interpretation for causes of late liver allograft dysfunction
Evaluation of needle biopsies and extensive clinicopathological correlation play an important role in the determination of liver allograft dysfunction occurring more than I year after transplantation. Interpretation of these biopsies can be quite difficult because of the high incidence of recurrent diseases that show histopathological, clinical, and serological features that overlap with each other and with rejection. Also, more than one insult can contribute to allograft injury. In an attempt to enable centers to compare and pool results, improve therapy, and better understand pathophysiological disease mechanisms, the Banff Working Group on Liver Allograft Pathology herein proposes a set of consensus criteria for the most common and problematic causes of late liver allograft dysfunction, including late-onset acute and chronic rejection, recurrent and new-onset viral and autoimmune hepatitis, biliary strictures, and recurrent primary biliary cirrhosis and primary sclerosing cholangitis. A discussion of differential diagnosis is also presented
Osteopontin Deficiency Produces Osteoclast Dysfunction Due to Reduced CD44 Surface Expression
Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN−/− osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the α(v)β(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling