4,345 research outputs found

    The QSO evolution derived from the HBQS and other complete QSO surveys

    Get PDF
    An ESO Key programme dedicated to an Homogeneous Bright QSO Survey (HBQS) has been completed. 327 QSOs (Mb<-23, 0.3<z<2.2) have been selected over 555 deg^2 with 15<B<18.75. For B<16.4 the QSO surface density turns out to be a factor 2.2 higher than what measured by the PG survey, corresponding to a surface density of 0.013+/-.006 deg^{-2}. If the Edinburgh QSO Survey is included, an overdensity of a factor 2.5 is observed, corresponding to a density of 0.016+/-0.005 deg^{-2}. In order to derive the QSO optical luminosity function (LF) we used Monte Carlo simulations that take into account of the selection criteria, photometric errors and QSO spectral slope distribution. The LF can be represented with a Pure Luminosity Evolution (L(z)\propto(1+z)^k) of a two power law both for q_0=0.5 and q_0=0.1. For q_0=0.5 k=3.26, slower than the previous Boyle's (1992) estimations of k=3.45. A flatter slope beta=-3.72 of the bright part of the LF is also required. The observed overdensity of bright QSOs is concentrated at z<0.6. It results that in the range 0.3<z<0.6 the luminosity function is flatter than observed at higher redshifts. In this redshift range, for Mb<-25, 32 QSOs are observed instead of 19 expected from our best-fit PLE model. This feature requires a luminosity dependent luminosity evolution in order to satisfactorily represent the data in the whole 0.3<z<2.2 interval.Comment: Invited talk in "Wide Field Spectroscopy" (20-24 May 1996, Athens), eds. M. Kontizas et al. 6 pages and 3 eps figures, LaTex file, uses epfs.sty and crckapb.sty (included

    The warm circumstellar envelope and wind of the G9 IIb star HR 6902

    Get PDF
    IUE observations of the eclipsing binary system HR 6902 obtained at various epochs spread over four years indicate the presence of warm circumstellar material enveloping the G9 IIb primary. The spectra show Si IV and C IV absorption up to a distance of 3.3 giant radii (R_g}. Line ratio diagnostics yields an electron temperature of ~ 78000 K which appears to be constant over the observed height range. Applying a least square fit absorption line analysis we derive column densities as a function of height. We find that the inner envelope (< 3 R_g) of the bright giant is consistent with a hydrostatic density distribution. The derived line broadening velocity of ~ 70 kms^{-1} is sufficient to provide turbulent pressure support for the required scale height. However, an improved agreement with observations over the whole height regime including the emission line region is obtained with an outflow model. We demonstrate that the common beta power-law as well as a P \propto rho wind yield appropriate fit models. Adopting a continuous mass outflow we obtain a mass-loss rate of M_loss= (0.8 - 3.4)*10^{-11} M_{sun}yr^{-1} depending on the particular wind model.Comment: 11 pages, 8 figures, submitted to Astronomy Astrophysics main Journa

    A rotating helical filament in the L1251 dark cloud

    Full text link
    (Abridged) Aims. We derive the physical properties of a filament discovered in the dark cometary-shaped cloud L1251. Methods. Mapping observations in the NH3(1,1) and (2,2) inversion lines, encompassing 300 positions toward L1251, were performed with the Effelsberg 100-m telescope at a spatial resolution of 40 arcsec and a spectral resolution of 0.045 km/s. Results. The filament L1251A consists of three condensations (alpha, beta, and gamma) of elongated morphology, which are combined in a long and narrow structure covering a 38 arcmin by 3 arcmin angular range. The opposite chirality (dextral and sinistral) of the alpha+beta and gamma condensations indicates magnetic field helicities of two types, negative and positive, which were most probably caused by dynamo mechanisms. We estimated the magnetic Reynolds number Rm > 600 and the Rossby number R < 1, which means that dynamo action is important.Comment: 21 pages, 10 figures, 1 table. Accepted for publication in A&

    The baryon density at z=0.9-1.9 - Tracing the warm-hot intergalactic medium with broad Lyman alpha absorption

    Full text link
    We present an analysis of the Lyman alpha forests of five quasar spectra in the near UV. Properties of the intergalactic medium (IGM) at an intermediate redshift interval (0.9 < z < 1.9) are studied. The amount of baryons in the diffuse photoionised IGM and the warm-hot intergalactic medium (WHIM) are traced to get constraints on the redshift evolution of the different phases of the intergalactic gas. The baryon density of the diffuse IGM is determined with photoionisation calculations under the assumption of local hydrostatic equilibrium. We assume that the gas is ionised by a metagalactic background radiation with a Haardt & Madau (2001) spectrum. The WHIM is traced with broad Lyman alpha (BLA) absorption. The properties of a number of BLA detections are studied. Under the assumption of collisional ionisation equilibrium a lower limit to the baryon density could be estimated. It is found that the diffuse photoionised IGM contains at least 25% of the total baryonic matter at redshifts 1 < z < 2. For the WHIM a lower limit of 2.4% could be determined. Furthermore the data indicates that the intergalactic gas is in a state of evolution at z=1.5. We confirm that a considerable part of the WHIM is created between z=1 and z=2.Comment: 6 pages, 1 figure, accepted for publication in A&

    Reionization of Hydrogen and Helium by Early Stars and Quasars

    Get PDF
    We compute the reionization histories of hydrogen and helium due to the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, z_tran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star-formation efficiency, f_esc f_*. We constrain the allowed range of these free parameters at high redshifts based on the lack of the HI Gunn-Peterson trough at z<6 and the upper limit on the total intergalactic optical depth for electron scattering, tau_es<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of f_esc f_* and z_tran lead to an early peak in the ionized fraction due to metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely an early HII or HeIII overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, tau_es does not correspond directly to the reionization redshift. We generically find values of tau_es>7%, that should be detectable by the MAP satellite.Comment: 33 pages, 10 figures, Accepted for publication in Ap
    • …
    corecore