1,648 research outputs found

    Experimental development of processes to produce homogenized alloys of immiscible metals, phase 3

    Get PDF
    An experimental drop tower package was designed and built for use in a drop tower. This effort consisted of a thermal analysis, container/heater fabrication, and assembly of an expulsion device for rapid quenching of heated specimens during low gravity conditions. Six gallium bismuth specimens with compositions in the immiscibility region (50 a/o of each element) were processed in the experimental package: four during low gravity conditions and two under a one gravity environment. One of the one gravity processed specimens did not have telemetry data and was subsequently deleted for analysis since the processing conditions were not known. Metallurgical, Hall effect, resistivity, and superconductivity examinations were performed on the five specimens. Examination of the specimens showed that the gallium was dispersed in the bismuth. The low gravity processed specimens showed a relatively uniform distribution of gallium, with particle sizes of 1 micrometer or less, in contrast to the one gravity control specimen. Comparison of the cooling rates of the dropped specimens versus microstructure indicated that low cooling rates are more desirable

    Nitrogen tetroxide flow decay study for the Orbital Workshop Propulsion System Final report

    Get PDF
    Flow decay of nitrogen tetroxide in Orbital Workshop Propulsion Syste

    Vortex glass transitions in disordered three-dimensional XY models: Simulations for several different sets of parameters

    Full text link
    The anisotropic frustrated 3D XY model with strong disorder in the coupling constants is studied as a model of a disordered superconductor in an applied magnetic field. Simulations with the exchange Monte Carlo method are performed for frustrations f=1/5 and f=1/4, corresponding to two different values of the magnetic field along the z direction. The anisotropy is also varied. The determination of the helicity modulus from twist histograms is discussed in some detail and the helicity modulus is used in finite size scaling analyses of the vortex glass transition. The general picture is that the behavior in [Phys. Rev. Lett. 91, 077002 (2003)] is confirmed. For strong (e.g. isotropic) coupling in the z direction the helicity modulus fails to scale and it is argued that this is due to a too small effective randomness of such systems for the accessible system sizes

    Neel to staggered dimer order transition in a generalized honeycomb lattice Heisenberg model

    Full text link
    We study a generalized honeycomb lattice spin-1/2 Heisenberg model with nearest-neighbor antiferromagnetic 2-spin exchange, and competing 4-spin interactions which serve to stabilize a staggered dimer state which breaks lattice rotational symmetry. Using a combination of quantum Monte Carlo numerics, spin wave theory, and bond operator theory, we show that this model undergoes a strong first-order transition between a Neel state and a staggered dimer state upon increasing the strength of the 4-spin interactions. We attribute the strong first order character of this transition to the spinless nature of the core of point-like Z(3) vortices obtained in the staggered dimer state. Unlike in the case of a columnar dimer state, disordering such vortices in the staggered dimer state does not naturally lead to magnetic order, suggesting that, in this model, the dimer and Neel order parameters should be thought of as independent fields as in conventional Landau theory.Comment: 13 pages, 10 fig

    Chiral mixed phase in disordered 3d Heisenberg models

    Full text link
    Using Monte Carlo simulations, we compute the spin stiffness of a site-random 3d Heisenberg model with competing ferromagnetic and antiferromagnetic interactions. Our results for the pure limit yield values of the the critical temperature and the critical exponent Μ\nu in excellent agreement with previous high precision studies. In the disordered case, a mixed "chiral" phase is found which may be in the same universality class as 3d Heisenberg spin glasses.Comment: 5 pages, 4 figures, accepted in PRB Rapid Communication

    Dynamical scaling in Ising and vector spin glasses

    Full text link
    We have studied numerically the dynamics of spin glasses with Ising and XY symmetry (gauge glass) in space dimensions 2, 3, and 4. The nonequilibrium spin-glass susceptibility and the nonequilibrium energy per spin of samples of large size L_b are measured as a function of anneal time t_w after a quench to temperatures T. The two observables are compared to the equilibrium spin-glass susceptibility and the equilibrium energy, respectively, measured as functions of temperature T and system size L for a range of system sizes. For any time and temperature a nonequilibrium time-dependent length scale L*(t_w,T) can be defined by comparing equilibrium and nonequilibrium quantities. Our analysis shows that for all systems studied, an "effective dynamical critical exponent" parametrization L*(t_w,T) = A(T) t^(1/z(T)) fits the data well at each temperature within the whole temperature range studied, which extends from well above the critical temperature to near T = 0 for dimension 2, or to well below the critical temperature for the other space dimensions studied. In addition, the data suggest that the dynamical critical exponent z varies smoothly when crossing the transition temperature.Comment: 14 pages, 13 figures, 9 table

    Test and evaluation of Apollo 14 composite casting demonstration specimens 6, 9, and 12, phase 1

    Get PDF
    Flight and control specimens 6, 9, and 12 from the Apollo 14 composite casting demonstration were evaluated with respect to the degree of dispersion achieved for mixtures of immiscible materials under one-gravity and low gravity environments. The flight and control capsules 6, 9, and 12 contained paraffin and sodium acetate; paraffin, sodium acetate and argon; and paraffin, sodium acetate and 100 micrometer diameter tungsten microspheres, respectively. The evaluation and documentation utilized photographic and microstructure examinations, density measurements, and droplet size and distribution determinations. In addition, theoretical analyses were performed in order to aid in the understanding of the fluid behavior of the specimens during processing and subsequent solidification. A comparison of evaluated data with the theoretical analyses reveals that although the immiscible materials were uniquely dispersed in a low gravity environment, nonuniform dispersions were obtained primarily due to insufficient initial mixing and an essentially unidirectional thermal gradient during cooldown

    A Thallium Mediated Route to \u3cem\u3eσ\u3c/em\u3e-Arylalkynyl Complexes of Bipyridyltricarbonylrhenium(I)

    Get PDF
    A simple, one-pot preparation of rhenium(I) σ-arylalkynyl complexes is reported using thallium(I) hexafluorophosphate as a halogen abstraction agent. This new route to rhenium σ-alkynyls enjoys higher yields compared to analogous preparations using silver salts by eliminating potential electrochemical degradation pathways

    Group 11 tris(pyrazolyl)methane complexes: structural features and catalytic applications

    Get PDF
    Tris(pyrazolyl)methane ligands (Tpmx) have been for years a step behind their highly popular boron-anionic analogues, the tris(pyrazolyl)borate ligands (Tpx). However, in the last decade the development of new members of this family of ligands has boosted a number of contributions albeit their use in coordination chemistry. This fact has also triggered the application of metal-Tpmx complexes as catalysts for a range of organic transformations, particularly with group 11 metals. The main structural features of complexes containing the TpmxM (M = Cu, Ag, Au) unit and their success as catalysts in a variety of reactions under homogeneous or heterogeneous conditions are presented.We thank MINECO for support with Grant CTQ2017-82893-C2-1-
    • 

    corecore