16 research outputs found
Recommended from our members
Targeting BET bromodomain proteins in solid tumors
There is increasing interest in inhibitors targeting BET (bromodomain and extra-terminal) proteins because of the association between this family of proteins and cancer progression. BET inhibitors were initially shown to have efficacy in hematologic malignancies; however, a number of studies have now shown that BET inhibitors can also block progression of non-hematologic malignancies. In this Review, we summarize the efficacy of BET inhibitors in select solid tumors; evaluate the role of BET proteins in mediating resistance to current targeted therapies; and consider potential toxicities of BET inhibitors. We also evaluate recently characterized mechanisms of resistance to BET inhibitors; summarize ongoing clinical trials with these inhibitors; and discuss potential future roles of BET inhibitors in patients with solid tumors
\u3cem\u3eLkb1\u3c/em\u3e Inactivation Drives Lung Cancer Lineage Switching Governed by Polycomb Repressive Complex 2
Adenosquamous lung tumours, which are extremely poor prognosis, may result from cellular plasticity. Here, we demonstrate lineage switching of KRAS+ lung adenocarcinomas (ADC) to squamous cell carcinoma (SCC) through deletion of Lkb1 (Stk11) in autochthonous and transplant models. Chromatin analysis reveals loss of H3K27me3 and gain of H3K27ac and H3K4me3 at squamous lineage genes, including Sox2, ΔNp63 and Ngfr. SCC lesions have higher levels of the H3K27 methyltransferase EZH2 than the ADC lesions, but there is a clear lack of the essential Polycomb Repressive Complex 2 (PRC2) subunit EED in the SCC lesions. The pattern of high EZH2, but low H3K27me3 mark, is also prevalent in human lung SCC and SCC regions within ADSCC tumours. Using FACS-isolated populations, we demonstrate that bronchioalveolar stem cells and club cells are the likely cells-of-origin for SCC transitioned tumours. These findings shed light on the epigenetics and cellular origins of lineage-specific lung tumours
Recommended from our members
Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints
Despite compelling antitumour activity of antibodies targeting the programmed death 1 (PD-1): programmed death ligand 1 (PD-L1) immune checkpoint in lung cancer, resistance to these therapies has increasingly been observed. In this study, to elucidate mechanisms of adaptive resistance, we analyse the tumour immune microenvironment in the context of anti-PD-1 therapy in two fully immunocompetent mouse models of lung adenocarcinoma. In tumours progressing following response to anti-PD-1 therapy, we observe upregulation of alternative immune checkpoints, notably T-cell immunoglobulin mucin-3 (TIM-3), in PD-1 antibody bound T cells and demonstrate a survival advantage with addition of a TIM-3 blocking antibody following failure of PD-1 blockade. Two patients who developed adaptive resistance to anti-PD-1 treatment also show a similar TIM-3 upregulation in blocking antibody-bound T cells at treatment failure. These data suggest that upregulation of TIM-3 and other immune checkpoints may be targetable biomarkers associated with adaptive resistance to PD-1 blockade