354 research outputs found

    Mechanical versus thermodynamical melting in pressure-induced amorphization: the role of defects

    Full text link
    We study numerically an atomistic model which is shown to exhibit a one--step crystal--to--amorphous transition upon decompression. The amorphous phase cannot be distinguished from the one obtained by quenching from the melt. For a perfectly crystalline starting sample, the transition occurs at a pressure at which a shear phonon mode destabilizes, and triggers a cascade process leading to the amorphous state. When defects are present, the nucleation barrier is greatly reduced and the transformation occurs very close to the extrapolation of the melting line to low temperatures. In this last case, the transition is not anticipated by the softening of any phonon mode. Our observations reconcile different claims in the literature about the underlying mechanism of pressure amorphization.Comment: 7 pages, 7 figure

    Improved Field Reliability of High Performance Coatings, Appendix A: Best Current Technology

    Get PDF
    DTFH61-81-C-00034The best method for qualifying high performance coatings incorporates field testing and laboratory testing to determine performance characteristics. Recommended practices for cleaning structural steel and applying paints apply to high performance coatings. However, inspection is critical, as both surface cleanliness and film thickness are the exacting parameters that determine the performance of the coating system. Current contracting standards did not contribute to the lack of reliability of high performance coating systems. This report is Appendix A of the main report, FHWA/RD-82/118, "Improved Field Reliability of High Performance Coating Systems - Phase I: Identification of the Technology.

    Testing assumptions of nitrogen cycling between a temperate, model coral host and its facultative symbiont: symbiotic contributions to dissolved inorganic nitrogen assimilation

    Get PDF
    Coral symbioses are predicated on the need for mutual nutrient acquisition and translocation between partners. Carbon translocation is well-studied in this classic mutualism, while nitrogen (N) has received comparatively less attention. Quantifying the mechanisms and dynamics of N assimilation is critical to understanding the functional ecology of coral organisms. Given the importance of symbiosis to the coral holobiont, it is important to determine what role photosynthetic symbionts play in N acquisition. We used the facultatively symbiotic temperate coral Astrangia poculata and ^15N labeling to test the effects of symbiotic state and trophic status on N acquisition. We tracked assimilation of 2 forms of isotopically labeled dissolved inorganic N (DIN: ammonium, ^15NH_4+ and nitrate, ^15NO_3^-) by fed and starved colonies of both symbiotic and aposymbiotic A. poculata. Coral holobiont tissue was subsequently analyzed for δ^15N and changes in photosynthetic efficiency. Results suggest that corals acquired the most N from DIN via their symbiont Breviolum psygmophilum and that NH_4+ is more readily assimilated than NO_3^-. Photosynthetic efficiency increased with the addition of NH_4^+, but only for fed, symbiotic treatments. NO_3^- adversely affected photosynthetic efficiency among starved corals. Our results suggest that symbiosis is advantageous for DIN acquisition, that dysbiosis inhibits corals’ mixotrophic strategy of nutrient acquisition, and that either feeding or symbiosis alone does not fully provide the energetic advantage of both. This study lends support to the emerging hypothesis that symbionts are mutualists in optimal conditions but shift to a parasitic paradigm when resources or energy are scarce.Published versio

    Equivalence between free quantum particles and those in harmonic potentials and its application to instantaneous changes

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedIn quantum physics the free particle and the harmonically trapped particle are arguably the most important systems a physicist needs to know about. It is little known that, mathematically, they are one and the same. This knowledge helps us to understand either from the viewpoint of the other. Here we show that all general time-dependent solutions of the free-particle Schrodinger equation can be mapped to solutions of the Schrodinger equation for harmonic potentials, both the trapping oscillator and the inverted `oscillator'. This map is fully invertible and therefore induces an isomorphism between both types of system, they are equivalent. A composition of the map and its inverse allows us to map from one harmonic oscillator to another with a different spring constant and different center position. The map is independent of the state of the system, consisting only of a coordinate transformation and multiplication by a form factor, and can be chosen such that the state is identical in both systems at one point in time. This transition point in time can be chosen freely, the wave function of the particle evolving in time in one system before the transition point can therefore be linked up smoothly with the wave function for the other system and its future evolution after the transition point. Such a cut-and-paste procedure allows us to describe the instantaneous changes of the environment a particle finds itself in. Transitions from free to trapped systems, between harmonic traps of different spring constants or center positions, or, from harmonic binding to repulsive harmonic potentials are straightforwardly modelled. This includes some time dependent harmonic potentials. The mappings introduced here are computationally more efficient than either state-projection or harmonic oscillator propagator techniques conventionally employed when describing instantaneous (non-adiabatic) changes of a quantum particle's environmentPeer reviewe

    Cardiovascular safety of celecoxib in acute myocardial infarction patients: a nested case-control study

    Get PDF
    The objective was to measure the impact of exposure to coxibs and non-steroidal antiinflammatory drugs (NSAID) on morbidity and mortality in older patients with acute myocardial infarction (AMI). A nested case-control study was carried out using an exhaustive population-based cohort of patients aged 66 years and older living in Quebec (Canada) who survived a hospitalization for AMI (ICD-9 410) between 1999 and 2002. The main variables were all-cause and cardiovascular (CV) death, subsequent hospital admission for AMI, and a composite end-point including recurrent AMI or CV death. Conditional logistic regressions were used to estimate the risk of mortality and morbidity. A total of 19,823 patients aged 66 years and older survived hospitalization for AMI in the province of Quebec between 1999 and 2002. After controlling for covariables, the risk of subsequent AMI and the risk of composite end-point were increased by the use of rofecoxib. The risk of subsequent AMI was particularly high for new rofecoxib users (HR 2.47, 95% CI 1.57–3.89). No increased risk was observed for celecoxib users. No increased risk of CV death was observed for patients exposed to coxibs or NSAIDs. Patients newly exposed to NSAIDs were at an increased risk of death (HR 2.22, 95% CI 1.30–3.77) and of composite end-point (HR 2.28, 95% CI 1.35–3.84). Users of rofecoxib and NSAIDs, but not celecoxib, were at an increased risk of recurrent AMI and of composite end-point. Surprisingly, no increased risk of CV death was observed. Further studies are needed to better understand these apparently contradictory results

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Effect of event selection on jetlike correlation measurement in d+Au collisions at sNN=200 GeV

    Get PDF
    AbstractDihadron correlations are analyzed in sNN=200 GeV d+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions

    Beam-energy Dependence Of Charge Balance Functions From Au + Au Collisions At Energies Available At The Bnl Relativistic Heavy Ion Collider

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Balance functions have been measured in terms of relative pseudorapidity (Δη) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at sNN=7.7GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at sNN=2.76TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at sNN=7.7 GeV implies that a QGP is still being created at this relatively low energy. © 2016 American Physical Society.942CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoMinistry of Education and Science of the Russian FederationMOE, Ministry of Education of the People's Republic of ChinaMOST, Ministry of Science and Technology of the People's Republic of ChinaNRF-2012004024, National Research FoundationNSF, National Stroke FoundationConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    J/ψ polarization in p+p collisions at s=200 GeV in STAR

    Get PDF
    AbstractWe report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2<pT<6 GeV/c in p+p collisions at s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models
    corecore