863 research outputs found

    1 H -Imidazole-4-carbo­nitrile

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75107/1/S1600536805014509.pd

    Troponin Elevations After Electroconvulsive Therapy: The Need for Caution

    Get PDF
    BACKGROUND: Electroconvulsive therapy is used to treat patients with severe or resistant depression. Troponin elevations are associated with an adverse prognosis, and it is well known that central nervous system insults can cause biochemical evidence of cardiac injury. No study previously has studied this with electroconvulsive therapy. METHODS: Patients scheduled for electroconvulsive therapy were enrolled. Clinical information, an electrocardiogram, and a baseline sample for cardiac troponin I and T (cTnI and cTnT) were obtained. Electroconvulsive therapy was done with standard techniques. Subsequently, electrocardiograms and additional samples were obtained. cTnT was measured with the Roche assay and cTnI with the Dade Stratus equipment. Values above the 99th percentile were considered abnormal. RESULTS: Seventy patients completed the study. Four patients had elevated levels of cTn before treatment. In 3 patients, the elevations persisted. Four additional patients developed elevated cTn levels during electroconvulsive therapy. Two of the patients with cTn elevations died. No other events occurred during follow-up. CONCLUSIONS: Elevations of cTn occurred in 11.5% of patients treated with electroconvulsive therapy. Some of the elevations preceded therapy and some occurred during treatment. Given the adverse prognostic importance of cTn elevations in general, in addition to additional studies, an increased degree of medical scrutiny may be appropriate for this group of patients and for those receiving electroconvulsive therapy

    W-Extended Fusion Algebra of Critical Percolation

    Full text link
    Two-dimensional critical percolation is the member LM(2,3) of the infinite series of Yang-Baxter integrable logarithmic minimal models LM(p,p'). We consider the continuum scaling limit of this lattice model as a `rational' logarithmic conformal field theory with extended W=W_{2,3} symmetry and use a lattice approach on a strip to study the fundamental fusion rules in this extended picture. We find that the representation content of the ensuing closed fusion algebra contains 26 W-indecomposable representations with 8 rank-1 representations, 14 rank-2 representations and 4 rank-3 representations. We identify these representations with suitable limits of Yang-Baxter integrable boundary conditions on the lattice and obtain their associated W-extended characters. The latter decompose as finite non-negative sums of W-irreducible characters of which 13 are required. Implementation of fusion on the lattice allows us to read off the fusion rules governing the fusion algebra of the 26 representations and to construct an explicit Cayley table. The closure of these representations among themselves under fusion is remarkable confirmation of the proposed extended symmetry.Comment: 30 page

    Electron exchange coupling in a naturally occurring tetramangano cluster in the mineral helvite, (Mn4S)(SiBeO4)3

    Full text link
    The mineral helvite, (Mn4S)(BeSiO4)3, contains discrete tetrahedral Mn4S+6 clusters in which the S-2 is tetrahedrally coordinated and each Mn(II) is in a distorted tetrahedron of one S-2 and three oxygens; the cluster is situated within an encompassing lattice of SiO4-4 and BeO4-6 tetrahedra. Mn4S+6 centers provide an interesting model for comparison to the polynuclear manganese center that is associated with photosynthetic water oxidation. Magnetic susceptibility data between 77 and 298 K have been measured for a natural helvite sample containing principally Mn4S+6 centers but with significant contamination from Mn3FeS+6 and Mn3CaS+6. The data exhibited Curie-Weiss behavior with [mu]eff = 5.969 B.M. and [theta] = 178.3 K. An analysis of the magnetic susceptibility, based on Van Vleck's formalism, demonstrated the presence of antiferromagnetic coupling, with a coupling constant J = -5.83 cm-1. Mossbauer spectra of Mn3FeS centers in helvite and of Fe4S centers in the related mineral danalite have also been recorded. Isomer shifts show little temperature dependence and lie in the range 1.23-1.43 mm/sec.. This range is typical of tetrahedrally coordinated Fe(II) in several ionic crystals but is significantly above that of Fe(II) in ferredoxins and below that in the [quinone-Fe(II)-quinone] complex of the photosynthetic bacterium,Rhodopseudomonas sphaeroides. Quadrupole splittings are highly temperature dependent, ranging from 2.4 mm/sec at 4.2 K to less than 0.5 mm/sec at 248 K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25645/1/0000197.pd

    Geometric Exponents, SLE and Logarithmic Minimal Models

    Full text link
    In statistical mechanics, observables are usually related to local degrees of freedom such as the Q < 4 distinct states of the Q-state Potts models or the heights of the restricted solid-on-solid models. In the continuum scaling limit, these models are described by rational conformal field theories, namely the minimal models M(p,p') for suitable p, p'. More generally, as in stochastic Loewner evolution (SLE_kappa), one can consider observables related to nonlocal degrees of freedom such as paths or boundaries of clusters. This leads to fractal dimensions or geometric exponents related to values of conformal dimensions not found among the finite sets of values allowed by the rational minimal models. Working in the context of a loop gas with loop fugacity beta = -2 cos(4 pi/kappa), we use Monte Carlo simulations to measure the fractal dimensions of various geometric objects such as paths and the generalizations of cluster mass, cluster hull, external perimeter and red bonds. Specializing to the case where the SLE parameter kappa = 4p'/p is rational with p < p', we argue that the geometric exponents are related to conformal dimensions found in the infinitely extended Kac tables of the logarithmic minimal models LM(p,p'). These theories describe lattice systems with nonlocal degrees of freedom. We present results for critical dense polymers LM(1,2), critical percolation LM(2,3), the logarithmic Ising model LM(3,4), the logarithmic tricritical Ising model LM(4,5) as well as LM(3,5). Our results are compared with rigourous results from SLE_kappa, with predictions from theoretical physics and with other numerical experiments. Throughout, we emphasize the relationships between SLE_kappa, geometric exponents and the conformal dimensions of the underlying CFTs.Comment: Added reference

    Fusion algebra of critical percolation

    Full text link
    We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.Comment: 12 pages, v2: comments and references adde

    Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core From Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic

    Get PDF
    Building on an earlier study that confirmed the stability of the 405‐kyr eccentricity climate cycle and the timing of the Newark‐Hartford astrochronostratigraphic polarity time scale back to 215 Ma, we extend the magnetochronology of the Late Triassic Chinle Formation to its basal unconformity in scientific drill core PFNP‐1A from Petrified Forest National Park (Arizona, USA). The 335‐m‐thick Chinle section is imprinted with paleomagnetic polarity zones PF1r to PF10n, which we correlate to chrons E17r to E9n (~209 to 224 Ma) of the Newark‐Hartford astrochronostratigraphic polarity time scale. A sediment accumulation rate of ~34 m/Myr can be extended down to ~270 m, close to the base of the Sonsela Member and the base of magnetozone PF5n, which we correlate to chron E14n that onsets at 216.16 Ma. Magnetozones PF5r to PF10n in the underlying 65‐m‐thick section of the mudstone‐dominated Blue Mesa and Mesa Redondo members plausibly correlate to chrons E13r to E9n, indicating a sediment accumulation rate of only ~10 m/Myr. Published high‐precision U‐Pb detrital zircon dates from the lower Chinle tend to be several million years older than the magnetochronological age model. The source of this discrepancy is unclear but may be due to sporadic introduction of juvenile zircons that get recycled. The new magnetochronological constraint on the base of the Sonsela Member brings the apparent timing of the included Adamanian‐ Revueltian land vertebrate faunal zone boundary and the Zone II to Zone III palynofloral transition closer to the temporal range of the ~215 Ma Manicouagan impact structure in Canada

    Administration of Panobinostat Is Associated with Increased IL-17A mRNA in the Intestinal Epithelium of HIV-1 Patients

    Get PDF
    Intestinal CD4+ T cell depletion is rapid and profound during early HIV-1 infection.This leads to a compromised mucosal barrier that prompts chronic systemic inflammation.The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression.Thus, understanding the effects of new therapeutic strategies in the intestines has high priority. Histone deacetylase (HDAC) inhibitors (e.g., panobinostat) are actively under investigation as potential latency reversing agents in HIV eradication studies. These drugs have broad effects that go beyond reactivating virus, including modulation of immune pathways. We examined colonic biopsies from ART suppressed HIV-1 infected individuals (clinicaltrials.gov: NCT01680094) for the effects of panobinostat on intestinal T cell activation and on inflammatory cytokine production. We compared biopsy samples that were collected before and during oral panobinostat treatment and observed that panobinostat had a clear biological impact in this anatomical compartment. Specifically, we observed a decrease in CD69+ intestinal lamina propria T cell frequency and increased IL-17A mRNA expression in the intestinal epithelium. These results suggest that panobinostat therapy may influence the restoration of mucosal barrier function in these patients

    Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data

    Get PDF
    Motivation: Although widely accepted that high-throughput biological data are typically highly noisy, the effects that this uncertainty has upon the conclusions we draw from these data are often overlooked. However, in order to assign any degree of confidence to our conclusions, we must quantify these effects. Bootstrap resampling is one method by which this may be achieved. Here, we present a parametric bootstrapping approach for time-course data, in which Gaussian process regression (GPR) is used to fit a probabilistic model from which replicates may then be drawn. This approach implicitly allows the time dependence of the data to be taken into account, and is applicable to a wide range of problems

    Deep Synoptic Array Science: Polarimetry of 25 New Fast Radio Bursts Provides Insights into their Origins

    Full text link
    We report on a full-polarization analysis of the first 25 as yet non-repeating FRBs detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data reduction, calibration, and analysis procedures developed for this novel instrument. The data have 32 μ\mus time resolution and sensitivity to Faraday rotation measures (RMs) between ±106\pm10^{6} rad m−2^{-2}. RMs are detected for 20 FRBs with magnitudes ranging from 4−46704-4670 rad m−2^{-2}. 9/259/25 FRBs are found to have high (≥70%\ge 70\%) linear-polarization fractions. The remaining FRBs exhibit significant circular polarization (3/253/25), or are either partially depolarized (8/258/25) or unpolarized (5/255/25). We investigate the mechanism of depolarization, disfavoring stochastic RM variations within a scattering screen as a dominant cause. Polarization-state and possible RM variations are observed in the four FRBs with multiple sub-components, but only one other FRB shows a change in polarization state. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB sub-populations and FRBs with Galactic pulsars. Although FRBs are typically far more polarized than the average profiles of Galactic pulsars, and exhibit greater spread in polarization fractions than pulsar single pulses, we find a remarkable similarity between FRB polarization fractions and the youngest (characteristic ages <105<10^{5} yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and where propagation effects within progenitor magnetospheres can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric-propagation geometries may form a useful analogy for the origin of FRB polarization.Comment: 43 pages, 17 figure
    • …
    corecore