7 research outputs found

    Semen parameters and fertility potency of a cloned water buffalo (Bubalus bubalis) bull produced from a semen-derived epithelial cell.

    Full text link
    Semen contains epithelial cells that can be cultured in vitro. For somatic cell nuclear transfer applications, it is essential to know whether clone(s) produced from semen-derived epithelial cells (SedECs) are healthy and reproductively competent. In this study, the semen and fertility profile of a cloned bull (C1) that was produced from a SedEC were compared with its donor (D1) and with two cloned bulls (C2, C3) that were produced from commonly used skin-derived fibroblast cells (SkdFCs). We observed variations in some fresh semen parameters (ejaculated volume and mass motility), frozen-thawed sperm parameters (plasma membrane integrity, and computer-assisted semen analysis (CASA) indices), but values are within the normal expected range. There was no difference in sperm concentration of ejaculated semen and frozen-thawed semen parameters which include sperm motility, percentage of live and normal morphology sperm, and distance traveled through oestrus mucus. Following in vitro fertilization (IVF) experiments, zygotes from C1 had higher (P < 0.05) cleavage rates (81%) than C2, C3, and D1 (71%, 67%, and 75%, respectively); however, blastocyst development per cleaved embryo and quality of produced blastocysts did not differ. The conception rate of C1 was 46% (7/15) and C2 was 50% (8/15) following artificial insemination with frozen-thawed semen. Established pregnancies resulted in births of 7 and 6 progenies sired by C1 and C2, respectively, and all calves show no signs of phenotypical abnormalities. These results showed that semen from a cloned bull derived from SedECs is equivalent to semen from its donor bull and bulls cloned from SkdFCs

    Not Available

    Full text link
    Not AvailableSomatic cell nuclear transfer (SCNT) technology provides an opportunity to multiply superior animals that could speed up dissemination of favorable genes into the population. In the present study, we attempted to reproduce a superior breeding bull of Murrah buffalo, the best dairy breed of buffalo, using donor cells that were established from tail-skin biopsy and seminal plasma. We studied several parameters such as cell cycle stages, histone modifcations (H3K9ac and H3K27me3) and expression of developmental genes in donor cells to determine their SCNT reprogramming potentials. We successfully produced the cloned bull from an embryo that was produced from the skin-derived cell. Growth, blood hematology, plasma biochemistries, and reproductive organs of the produced cloned bull were found normal. Subsequently, the bull was employed for semen production. Semen parameters such as CASA (Computer Assisted Semen Analysis) variables and in vitro fertilizing ability of sperms of the cloned bull were found similar to non-cloned bulls, including the donor bull. At present, we have 12 live healthy progenies that were produced using artificial insemination of frozen semen of the cloned bull, which indicate that the cloned bull is fertile and can be utilized in the buffalo breeding schemes. Taken together, we demonstrate that SCNT can be used to reproduce superior buffalo bulls.Not Availabl

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore