13 research outputs found

    GROWTH AND PRODUCTIVITY OF ROSELLE (HIBISCUS SABDARIFFA L.) AS AFFECTED BY YEAST AND HUMIC ACID

    Get PDF
    This field study was undertaken at the Experimental Farm of Agriculture Faculty, Tanta University, during two seasons of 2015 and 2016 to investigate the efficiency of yeast and humic acid foliar application with the half recommended dose of NPK on plant growth, yield components and biochemical composition of roselle plant. The experiment consisted of five levels of yeast extract 0, 2, 4, 6 and 8 g/l and three levels of humic acid i.e. 0, 1 and 2 g/l. Fifteen treatment combinations were laid out in a split plot design. Treatments were twice applied, the first application was 30 days after sowing while, the second one was 20 days after the first one. Yeast and humic acid combinations influenced positively on roselle productivity as it raised plant height, stem diameter, branch number, fruit number/plant, calices yield/plant compared to control plants. Total chlorophyll, carbohydrates and anthocyanin content were increased by yeast and humic acid applications. Total protein and macro elements N, P and K showed an increase more so by the treatment of 8 g/l yeast plus 2 g/l humic acid. So, it could be recommended for using foliar spray of yeast at concentration of 8 g/l plus 2 g/l humic acid with the half recommended dose of NPK for improving the growth and productivity of roselle plant

    Seed Priming with Silicon as a Potential to Increase Salt Stress Tolerance in Lathyrus odoratus

    No full text
    Water shortage is a major problem limiting the expansion of green areas and landscapes. Using seawater as an alternative source of potable water is not a novel idea, but the issue of salt stress needs to be resolved. Salinity has a negative impact on growth and the aesthetic value of ornamental plants. In order to overcome these challenges, Lathyrus odoratus seeds were hydro-primed and halo-primed with silicon (Si) and silicon nanoparticles (SiNPs), and exposed to seawater levels. Seawater markedly reduced seed germination and growth of Lathyrus seedlings, but halo-priming was shown to significantly alleviate its negative effects. Broadly, SiNPs increased the germination percentage, reduced photosynthetic pigments and carbohydrates decrease, and enhanced water relations, despite having a negative effect on germination speed. Halo-priming significantly increased the proline content and the activities of certain enzymatic (SOD, APX and CAT) and nonenzymatic (phenolic and flavonoids) compounds, that positively influenced oxidative stress (lower MDA and H2O2 accumulation), resulting in seedlings with more salt stress tolerance. Halo-priming with Si or SiNPs enhanced the Si and K+ contents, and K+/Na+ ratio, associated with a reduction in Na+ accumulation. Generally, halo-priming with Si or SiNPs increased Lathyrus seedlings salt stress tolerance, which was confirmed using seawater treatments via improving germination percentage, seedlings growth and activation of the antioxidant machinery, which detoxifies reactive oxygen species (ROS)

    Silica Nanoparticles Enhances Physio-Biochemical Characters and Postharvest Quality of Rosa hybrida L. Cut Flowers

    No full text
    The effect of silica nanoparticles (SiNPs) preservative solutions on the postharvest quality of rose cut flowers was investigated in this study. SiNPs were used at the concentrations of 0, 1, 2, and 3 mg·dm−3. Treatments of SiNPs increased flower longevity compared to untreated flowers. Relative fresh weight, relative water content, and water uptake were improved because of SiNPs treatments. The enhancement in chlorophyll content, total soluble sugars, as well as total phenol and flavonoid contents were positively correlated with SiNPs treatments. Malondialdehyde (MDA) content significantly increased by control roses relative to treated ones. Activities of peroxidase (POX) and polyphenol oxidase (PPO) enzymes significantly increased because of SiNPs treatments compared to the control. The treatment of 2 mg SiNPs·dm−3 maximized the longevity and improved the postharvest quality of cut roses. The results obtained suggested that SiNPs treatments could improve the longevity and postharvest quality of cut roses by reducing lipid peroxidation and motivating antioxidant machinery, therefore, retaining the membrane integrity

    Essential oils prolonged the cut carnation longevity by limiting the xylem blockage and enhancing the physiological and biochemical levels.

    No full text
    Postharvest characteristics, such as vase life and antimicrobial preservation of commercial cut flowers are some of the major determinants of their market value worldwide. Extending vase life while restricting microbial proliferation in cut flowers is an important challenge faced by floricultural researchers. This study evaluates the preservative efficiency of different essential oils used as additive solutions in prolonging the longevity of carnation cv. Madam Collette cut flowers and restricting microbial growth in them. Cut carnations were treated with four essential oils: geranium, thyme, marjoram, and anise at concentrations of 0, 25, 50, and 75 mg/L. While treatment with all the essential oils prolonged the longevity of the cut flowers, thyme and marjoram oils were most effective at concentrations of 50 mg/L each. The vase life of thyme-treated and marjoram-treated carnations almost doubled to 18.5 days and 18.25 days, respectively, as compared to untreated flowers. Treatment with essential oils also led to an increase in water uptake by the cut flowers enhancing their relative water content (RWC). It also restricted the sharp decline of chlorophyll and total carbohydrates content of the flowers during their vase life period. Morphological features of the stem bases of treated and untreated carnations were analyzed using scanning electron microscopy (SEM). The stem ends of geranium and anise-treated carnations showed less bacterial growth than untreated flowers and no apparent xylem blockage was observed even after nine days of treatment. Furthermore, the presence of essential oils also reduced lipid peroxidation and free radical generation as observed by malondialdehyde (MDA) and H2O2 quantification, respectively. It also led to increased production of total phenols leading to enhanced membrane stability. The use of thyme and marjoram essential oils as antimicrobial preservatives and green antioxidants appears to have promising applications in both the industrial and scientific sectors

    Exogenously Supplemented Proline and Phenylalanine Improve Growth, Productivity, and Oil Composition of Salted Moringa by Up-Regulating Osmoprotectants and Stimulating Antioxidant Machinery

    No full text
    Salinity is linked to poor plant growth and a reduction in global food output. Therefore, there is an essential need for plant adaptation and mitigation of salinity stress conditions. Plants combat salinity stress influences by promoting a set of physiological, biochemical, and molecular actions. Tremendous mechanisms are being applied to induce plant stress tolerance, involving amino acid application. For evaluating the growth and productivity of Moringa oleifera trees grown under salt stress conditions, moringa has been cultivated under different levels of salinity and subjected to a foliar spray of proline (Pro) and phenylalanine (Phe) amino acids. Moringa plants positively responded to the lowest level of salinity as the leaves, inflorescences, seeds, and oil yields have been increased, but the growth and productivity slightly declined with increasing salinity levels after that. However, Pro and Phe applications significantly ameliorate these effects, particularly, Pro-treatments which decelerated chlorophyll and protein degradation and enhanced vitamin C, polyphenols, and antioxidant activity. A slight reduction in mineral content was observed under the high levels of salinity. Higher osmoprotectants (proline, protein, and total soluble sugars) content was given following Pro treatment in salted and unsalted plants. A significant reduction in oil yield was obtained as affected by salinity stress. Additionally, salinity exhibited a reduction in oleic acid (C18:1), linoleic (C18:2), and linolenic (C18:3) acids, and an increase in stearic (C18:0), palmitic (C16:0), eicosenoic (C20:2), and behenic (C22:0) acids. Generally, Pro and Phe treatments overcome the harmful effects of salinity in moringa trees by stimulating the osmoprotectants, polyphenols, and antioxidant activity, causing higher dry matter accumulation and better defense against salinity stress

    Brassinolide Maximized the Fruit and Oil Yield, Induced the Secondary Metabolites, and Stimulated Linoleic Acid Synthesis of Opuntia ficus-indica Oil

    No full text
    Prickly pear plant is widely cultivated in arid and semi-arid climates. Its fruits are rich in polyphenols, proteins, vitamin C, minerals, fatty acids, and amino acids. The oil extracted from the seeds also has a significant proportion of linoleic acid (ω6) and might be employed as a therapeutic raw material. The potential of enhancing fruit yield, increasing bioactive compounds of the fruit pulp, and improving the unsaturated fatty acid content of prickly pear oilseed by using the foliar application of brassinolide as a plant growth regulator was the main goal of this study. Prickly pear plants were foliar sprayed with a brassinolide solution at concentrations of 0, 1, 3, and 5 mg L−1. The plant performance was significantly improved following brassinolide applications, as compared with untreated plants. The plants subjected to 5 mg L−1 application exhibited 183 and 188% stimulation in the fruit yield, and 167 and 172% in the seed yield for the first and second seasons, respectively. The highest concentration of phenolic, flavonoid, protein, vitamin C, and maximum antioxidant activity in the fruit pulp was observed following 5 mg L−1 brassinolide treatment. The oil yield has been increased by 366 and 353% following brassinolide at a 5 mg L−1 level over control plants. Linoleic, oleic, and palmitic acids are the major components in prickly pear seed oil. Brassinolide foliar spraying induced an alternation in the fatty acid profile, as linoleic and oleic acids exhibited 5 and 4% higher following 5 mg L−1 application as compared with untreated plants. In conclusion, the treatment of 5 mg L−1 brassinolide improved the growth and quality of prickly pear plants by boosting fruit and seed yields, increasing active component content in the fruit pulp, improving mineral content, and increasing oil production and linoleic acid proportion

    Brassinolide Maximized the Fruit and Oil Yield, Induced the Secondary Metabolites, and Stimulated Linoleic Acid Synthesis of <i>Opuntia ficus-indica</i> Oil

    No full text
    Prickly pear plant is widely cultivated in arid and semi-arid climates. Its fruits are rich in polyphenols, proteins, vitamin C, minerals, fatty acids, and amino acids. The oil extracted from the seeds also has a significant proportion of linoleic acid (ω6) and might be employed as a therapeutic raw material. The potential of enhancing fruit yield, increasing bioactive compounds of the fruit pulp, and improving the unsaturated fatty acid content of prickly pear oilseed by using the foliar application of brassinolide as a plant growth regulator was the main goal of this study. Prickly pear plants were foliar sprayed with a brassinolide solution at concentrations of 0, 1, 3, and 5 mg L−1. The plant performance was significantly improved following brassinolide applications, as compared with untreated plants. The plants subjected to 5 mg L−1 application exhibited 183 and 188% stimulation in the fruit yield, and 167 and 172% in the seed yield for the first and second seasons, respectively. The highest concentration of phenolic, flavonoid, protein, vitamin C, and maximum antioxidant activity in the fruit pulp was observed following 5 mg L−1 brassinolide treatment. The oil yield has been increased by 366 and 353% following brassinolide at a 5 mg L−1 level over control plants. Linoleic, oleic, and palmitic acids are the major components in prickly pear seed oil. Brassinolide foliar spraying induced an alternation in the fatty acid profile, as linoleic and oleic acids exhibited 5 and 4% higher following 5 mg L−1 application as compared with untreated plants. In conclusion, the treatment of 5 mg L−1 brassinolide improved the growth and quality of prickly pear plants by boosting fruit and seed yields, increasing active component content in the fruit pulp, improving mineral content, and increasing oil production and linoleic acid proportion

    Biostimulation of Plectranthus amboinicus (Lour.) Spreng. with Different Yeast Strains: Morphological Performance, Productivity, Phenotypic Plasticity, and Antioxidant Activity

    No full text
    Due to the growing knowledge about the microorganism&ndash;plant relationship, medicinal plants have gained great attention in their bio fertilization programs using biostimulants based on microorganisms. Plectranthus amboinicus (Lour.) Spreng. is a perennial herb belonging to the family Lamiaceae and has therapeutic and nutritional properties attributed to its natural phytochemical compounds, which are highly valued in the pharmaceutical industry. A pot experiment was conducted to evaluate the efficiency of Rhodotorula muciligenese (Y1), Candida sake (Y2), Candida apicola (Y3), and Candida kunwiensis (Y4) yeast strains in concentrations of 0 (C1), 1 &times; 104 (C2), 1 &times; 107 (C3), and 1 &times; 109 (C4) CFU mL&minus;1 on the growth performance, productivity, and antioxidant activity of P. amboinicus plants. Yeast applications promoted growth attributes, nutritional value, and antioxidant activity in P. amboinicus leaves. Candida apicola exhibited the greatest root growth, herb weight, and essential oil production; it also stimulated carbohydrates, protein, and mineral content, as well as DPPH and FRAP activities. Whereas Rhodotorula muciligenese recorded the lowest values in this respect, among the concentrations used, the 1 &times; 107 CFU mL&minus;1 concentration showed the highest values in this respect. These new findings showed that the foliar application of Candida&nbsp;apicola not only maximized the growth and productivity but also maximized the nutritional value and antioxidant activity of P. amboinicus

    Biochar Stimulated Actual Evapotranspiration and Wheat Productivity under Water Deficit Conditions in Sandy Soil Based on Non-Weighing Lysimeter

    No full text
    The major climate-related hazard to worldwide agricultural productivity is drought, which is becoming more common because of ongoing climate change, especially in the arid and semi-arid regions. Herein, we investigated the influence of biochar soil application at 0, (B1), 7.5 ha−1 (B2), and 15 t ha−1 (B3) on the productivity and drought-tolerance indices of wheat (Triticum aestivum L., cv. Sakha 93) grown in sandy soil under irrigation levels of 100 (I1), 80 (I2), and 60% (I3) of crop evapotranspiration (ETc), as well as soil properties based on non-weighing lysimeter units. Increasing water deficiency significantly decreased the actual evapotranspiration (ETa) values. A growing biochar rate caused a significant increase in ETa values, water use efficiency, and wheat productivity compared to the untreated control. Additionally, biochar supplementation revealed an improvement in soil quality as measured by the reduction in the bulk density and hydraulic conductivity with an increase in the total porosity and void ratio of the experimental soil. The correlation analysis exhibited a highly significant and positive correlation (0.98 **) between biological yield and grain yield traits. Therefore, it may be stated that these traits are the most significant components of the evaluated grain yield in wheat plants. The productivity of I1 plants was not significantly different and slightly higher than that of I2 plants. Therefore, it can be recommended that exposed wheat plants cultivated in sandy soil with I2 × B3 treatment significantly provide the highest yield while saving 20% of the irrigation water
    corecore