19 research outputs found
A robust, high-flux source of laser-cooled ytterbium atoms
We present a high-flux source of cold ytterbium atoms that is robust, lightweight and low-maintenance. Our apparatus delivers 1 × 109 atoms s−1 into a 3D magneto-optical trap without requiring water cooling or high current power supplies. We achieve this by employing a Zeeman slower and a 2D magneto-optical trap fully based on permanent magnets in Halbach configurations. This strategy minimizes mechanical complexity, stray magnetic fields, and heat production while requiring little to no maintenance, making it applicable to both embedded systems that seek to minimize electrical power consumption, and large scale experiments to reduce the complexity of their subsystems
Red- and blue-detuned magneto-optical trapping with liquid crystal variable retarders
We exploit red- and blue-detuned magneto-optical trapping (MOT) of 87Rb benefitting from a simplified setup and a novel approach based on liquid crystal variable retarders (LCVR). To maintain the trapping forces when switching from a red- to a blue-detuned MOT, the handedness of the circular polarization of the cooling beams needs to be reversed. LCVRs allow fast polarization control and represent compact, simple, and cost-efficient components, which can easily be implemented in existing laser systems. This way, we achieve a blue-detuned type-II MOT for 8.7 × 108 atoms of 87Rb with sub-Doppler temperatures of 44 μK well below the temperatures reached in a conventional 87Rb type-I MOT. The phase space density is increased by more than two orders of magnitude compared to the standard red-detuned type-I MOT. The setup can readily be transferred to any other systems working with 87Rb
High-flux source system for matter-wave interferometry exploiting tunable interactions
Atom interferometers allow determining inertial effects to high accuracy. Quantum-projection noise as well as systematic effects impose demands on large atomic flux as well as ultralow expansion rates. Here we report on a high-flux source of ultracold atoms with free expansion rates near the Heisenberg limit directly upon release from the trap. Our results are achieved in a time-averaged optical dipole trap and enabled through dynamic tuning of the atomic scattering length across two orders of magnitude interaction strength via magnetic Feshbach resonances. We demonstrate Bose-Einstein condensates with more than 6×104 particles after evaporative cooling for 170 ms and their subsequent release with a minimal expansion energy of 4.5 nK in one direction. Based on our results we estimate the performance of an atom interferometer and compare our source system to a high performance chip trap, as readily available for ultraprecise measurements in microgravity environments
Inertial sensing with quantum gases: a comparative performance study of condensed versus thermal sources for atom interferometry
Abstract: Quantum sensors based on light pulse atom interferometers allow for measurements of inertial and electromagnetic forces such as the accurate determination of fundamental constants as the fine structure constant or testing foundational laws of modern physics as the equivalence principle. These schemes unfold their full performance when large interrogation times and/or large momentum transfer can be implemented. In this article, we demonstrate how interferometry can benefit from the use of Bose–Einstein condensed sources when the state of the art is challenged. We contrast systematic and statistical effects induced by Bose–Einstein condensed sources with thermal sources in three exemplary science cases of Earth- and space-based sensors. Graphic abstract: [Figure not available: see fulltext.] © 2021, The Author(s)
Atomic source selection in space-borne gravitational wave detection
Recent proposals for space-borne gravitational wave detectors based on atom interferometry rely on extremely narrow single-photon transition lines as featured by alkaline-earth metals or atomic species with similar electronic configuration. Despite their similarity, these species differ in key parameters such as abundance of isotopes, atomic flux, density and temperature regimes, achievable expansion rates, density limitations set by interactions, as well as technological and operational requirements. In this study, we compare viable candidates for gravitational wave detection with atom interferometry, contrast the most promising atomic species, identify the relevant technological milestones and investigate potential source concepts towards a future gravitational wave detector in space
-BaBO deep UV monolithic walk-off compensating tandem
The generation of watt-level cw narrow-linewidth sources at specific deep UV
wavelengths corresponding to atomic cooling transitions usually employs
external cavity-enhanced second-harmonic generation (SHG) of moderate-power
visible lasers in birefringent materials. In this work, we investigate a novel
approach to cw deep-UV generation by employing the low-loss BBO in a monolithic
walkoff-compensating structure [Zondy {\it{et al}}, J. Opt. Soc. Am. B
{\bf{20}} (2003) 1675] to simultaneously enhance the effective nonlinear
coefficient while minimizing the UV beam ellipticity under tight focusing. As a
preliminary step to cavity-enhanced operation, and in order to apprehend the
design difficulties stemming from the extremely low acceptance angle of BBO, we
investigate and analyze the single-pass performance of a mm monolithic
walk-off compensating structure made of 2 optically-contacted BBO plates cut
for type-I critically phase-matched SHG of a cw nm dye laser. As
compared with a bulk crystal of identical length, a sharp UV efficiency
enhancement factor of 1.65 has been evidenced with the tandem structure, but at
nm from the targeted fundamental wavelength, highlighting the
sensitivity of this technique when applied to a highly birefringent material
such as BBO. Solutions to angle cut residual errors are identified so as to
match accurately more complex periodic-tandem structure performance to any
target UV wavelength, opening the prospect for high-power, good beam quality
deep UV cw laser sources for atom cooling and trapping.Comment: 21 pages, 8 figures, to appear in Opt. Commu
A scalable high-performance magnetic shield for very long baseline atom interferometry
We report on the design, construction, and characterization of a 10 m-long high-performance magnetic shield for very long baseline atom interferometry. We achieve residual fields below 4 nT and longitudinal inhomogeneities below 2.5 nT/m over 8 m along the longitudinal direction. Our modular design can be extended to longer baselines without compromising the shielding performance. Such a setup constrains biases associated with magnetic field gradients to the sub-pm/s2 level in atomic matterwave accelerometry with rubidium atoms and paves the way toward tests of the universality of free fall with atomic test masses beyond the 10-13 level. © 2020 Author(s)
Gravitational-wave Detection With Matter-wave Interferometers Based On Standing Light Waves
We study the possibility of detecting gravitational-waves with matter-wave
interferometers, where atom beams are split, deflected and recombined totally
by standing light waves. Our calculation shows that the phase shift is
dominated by terms proportional to the time derivative of the gravitational
wave amplitude. Taking into account future improvements on current
technologies, it is promising to build a matter-wave interferometer detector
with desired sensitivity.Comment: 7 pages, 3 figures. To be published in General Relativity and
Gravitatio
T 3 Stern-Gerlach matter-wave interferometer
The article of record as published may be found at https://doi.org/10.1103/PhysRevLett.123.083601We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating four magnetic field gradient pulses to create a state-dependent force. In contrast to typical atom interferometers which make use of laser light for the splitting and recombination of the wave packets, this realization uses no light and can therefore serve as a high-precision surface probe at very close distances.This work is funded in part by the Israel Science Foundation (grant No. 856/18) and the German- Israeli DIP projects (Hybrid devices: FO 703/2-1, AR 924/1-1, DU 1086/2-1) supported by the DFG. We also acknowledge support from the Israeli Council for Higher Education (Israel). M.A.E. is thankful to the Center for Integrated Quantum Science and Technology (IQST ) for its generous financial support. W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University, and to Texas A&M AgriLife Research for the support of this work. The research of the IQST is financially supported by the Ministry of Science, Research and Arts, Baden-Wurttemberg. F.A.N. is grateful for a generous Laboratory University Collaboration Initiative (LUCI) grant from the Office of the Secretary of Defense.This work is funded in part by the Israel Science Foundation (grant No. 856/18) and the German- Israeli DIP projects (Hybrid devices: FO 703/2-1, AR 924/1-1, DU 1086/2-1) supported by the DFG. We also acknowledge support from the Israeli Council for Higher Education (Israel). M.A.E. is thankful to the Center for Integrated Quantum Science and Technology (IQST ) for its generous financial support. W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University, and to Texas A&M AgriLife Research for the support of this work. The research of the IQST is financially supported by the Ministry of Science, Research and Arts, Baden-Wurttemberg. F.A.N. is grateful for a generous Laboratory University Collaboration Initiative (LUCI) grant from the Office of the Secretary of Defense
Atom gratings produced by large angle atom beam splitters
An asymptotic theory of atom scattering by large amplitude periodic
potentials is developed in the Raman-Nath approximation. The atom grating
profile arising after scattering is evaluated in the Fresnel zone for
triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It
is shown that, owing to the scattering in these potentials, two
\QTR{em}{groups} of momentum states are produced rather than two distinct
momentum components. The corresponding spatial density profile is calculated
and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure