24 research outputs found

    Conceptual design of a hybrid neutron-gamma detector for study of beta-delayed neutrons at the RIB facility of RIKEN

    Get PDF
    The conceptual design of the BRIKEN neutron detector at the radioactive ion beam factory (RIBF) of the RIKEN Nishina Center is reported. The BRIKEN setup is a complex system aimed at detecting heavy-ion implants, β particles, γ rays and β-delayed neutrons. The whole setup includes the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and up to 166 3He-filled counters embedded in a high-density polyethylene moderator. The design is quite complex due to the large number and different types of 3He-tubes involved and the additional constraints introduced by the ancillary detectors for charged particles and γ rays. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-counter array, aiming for the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected detector parameters of merit, namely, the average neutron detection efficiency and the efficiency flatness as a function of a reduced number of geometric variables. The response of the neutron detector is obtained from a systematic Monte Carlo simulation implemented in Geant4. The robustness of the algorithm allowed us to design a versatile detection system, which operated in hybrid mode includes the full neutron counter and two clover detectors for high-precision gamma spectroscopy. In addition, the system can be reconfigured into a compact mode by removing the clover detectors and re-arranging the 3He tubes in order to maximize the neutron detection performance. Both operation modes shows a rather flat and high average efficiency. In summary, we have designed a system which shows an average efficiency for hybrid mode (3He tubes + clovers) of 68.6% and 64% for neutron energies up to 1 and 5 MeV, respectively. For compact mode (only 3He tubes), the average efficiency is 75.7% and 71% for neutron energies up to 1 and 5 MeV, respectively. The performance of the BRIKEN detection system has been also quantified by means of Monte Carlo simulations with different neutron energy distributions

    Observation of a mu s isomer in In-134(49)85: Proton-neutron coupling "southeast" of Sn-132(50)82

    Get PDF
    We report on the observation of a microsecond isomeric state in the single-proton-hole, three-neutron-particle nucleus ¹³⁴In. The nuclei of interest were produced by in-flight fission of a ²³⁸U beam at the Radioactive Isotope Beam Factory at RIKEN. The isomer depopulates through a γ ray of energy 56.7(1) keV and with a half-life of T1/2=3.5(4)μs. Based on the comparison with shell-model calculations, we interpret the isomer as the Iπ=5− member of the π0g−19/2⊗ν1f37/2 multiplet, decaying to the Iπ=7− ground state with a reduced-transition probability of B(E2;5−→7−)=0.53(6)W.u.Observation of this isomer, and lack of evidence in the current work for a Iπ=5− isomer decay in ¹³²In, provides a benchmark of the proton-neutron interaction in the region of the nuclear chart “southeast” of ¹³²Sn, where experimental information on excited states is sparse

    β-Delayed One and Two Neutron Emission Probabilities Southeast of ^{132}Sn and the Odd-Even Systematics in r-Process Nuclide Abundances.

    Get PDF
    The β-delayed one- and two-neutron emission probabilities (P_{1n} and P_{2n}) of 20 neutron-rich nuclei with N≥82 have been measured at the RIBF facility of the RIKEN Nishina Center. P_{1n} of ^{130,131}Ag, ^{133,134}Cd, ^{135,136}In, and ^{138,139}Sn were determined for the first time, and stringent upper limits were placed on P_{2n} for nearly all cases. β-delayed two-neutron emission (β2n) was unambiguously identified in ^{133}Cd and ^{135,136}In, and their P_{2n} were measured. Weak β2n was also detected from ^{137,138}Sn. Our results highlight the effect of the N=82 and Z=50 shell closures on β-delayed neutron emission probability and provide stringent benchmarks for newly developed macroscopic-microscopic and self-consistent global models with the inclusion of a statistical treatment of neutron and γ emission. The impact of our measurements on r-process nucleosynthesis was studied in a neutron star merger scenario. Our P_{1n} and P_{2n} have a direct impact on the odd-even staggering of the final abundance, improving the agreement between calculated and observed Solar System abundances. The odd isotope fraction of Ba in r-process-enhanced (r-II) stars is also better reproduced using our new data

    <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi></mml:math> -delayed neutron emissions from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>N</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>50</mml:mn></mml:mrow></mml:math> gallium isotopes

    Get PDF
    β-delayed γ-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of He3 neutron counters (BRIKEN). β-2n-γ events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the γ branching ratios were obtained for these isotopes, and the neutron emission probabilities (Pxn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P1n and P2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P2n/P1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and γ branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J≤3 for the unknown ground-state spin of the odd-odd nucleus Ga86, from the Iγ(4+→2+)/Iγ(2+→0+) ratio of Ga84 and the P2n/P1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to γ measurements of the multineutron emitters

    Pharmacokinetics and immunogenicity of eftozanermin alfa in subjects with previously-treated solid tumors or hematologic malignancies:results from a phase 1 first-in-human study

    Full text link
    Purpose: Eftozanermin alfa is a second-generation tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor agonist that enhances death receptor 4/5 clustering on tumor cells to induce apoptosis. We report the pharmacokinetics and immunogenicity of eftozanermin alfa administered intravenously to 153 adults with previously-treated solid tumors or hematologic malignancies from the first-in-human, open-label, dose-escalation and dose-optimization study. Methods: Dose escalation evaluated eftozanermin alfa monotherapy 2.5–15 mg/kg on Day 1 or Days 1/8 of a 21-day cycle. Dose optimization evaluated eftozanermin alfa monotherapy or combination therapy with either oral venetoclax 400–800 mg daily (eftozanermin alfa 1.25–7.5 mg/kg Days 1/8/15 of a 21-day cycle) or chemotherapy (eftozanermin alfa 3.75 or 7.5 mg/kg Days 1/8/15/22 of a 28-day cycle and FOLFIRI regimen [leucovorin, 5-fluorouracil, and irinotecan] with/without bevacizumab on Days 1/15 of a 28-day cycle). Results: Systemic exposures (maximum observed concentration [C max] and area under the concentration–time curve [AUC]) of eftozanermin alfa were approximately dose-proportional across the entire dose escalation range with minimal to no accumulation in Cycle 3 versus Cycle 1 exposures. Comparable exposures and harmonic mean half-lives (35.1 h [solid tumors], 31.3 h [hematologic malignancies]) were observed between malignancy types. Exposures (dose-normalized C max and AUC) in Japanese subjects were similar to non-Japanese subjects. Furthermore, eftozanermin alfa/venetoclax combination therapy did not have an impact on the exposures of either agent. Treatment-emergent anti-drug antibodies were observed in 9.4% (13/138) of subjects. Conclusions: The study results, including a pharmacokinetic profile consistent with weekly dosing and low incidence of immunogenicity, support further investigation of eftozanermin alfa. Trial registration ID: NCT03082209.</p

    Pharmacokinetics and immunogenicity of eftozanermin alfa in subjects with previously-treated solid tumors or hematologic malignancies:results from a phase 1 first-in-human study

    Full text link
    Purpose: Eftozanermin alfa is a second-generation tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor agonist that enhances death receptor 4/5 clustering on tumor cells to induce apoptosis. We report the pharmacokinetics and immunogenicity of eftozanermin alfa administered intravenously to 153 adults with previously-treated solid tumors or hematologic malignancies from the first-in-human, open-label, dose-escalation and dose-optimization study. Methods: Dose escalation evaluated eftozanermin alfa monotherapy 2.5–15 mg/kg on Day 1 or Days 1/8 of a 21-day cycle. Dose optimization evaluated eftozanermin alfa monotherapy or combination therapy with either oral venetoclax 400–800 mg daily (eftozanermin alfa 1.25–7.5 mg/kg Days 1/8/15 of a 21-day cycle) or chemotherapy (eftozanermin alfa 3.75 or 7.5 mg/kg Days 1/8/15/22 of a 28-day cycle and FOLFIRI regimen [leucovorin, 5-fluorouracil, and irinotecan] with/without bevacizumab on Days 1/15 of a 28-day cycle). Results: Systemic exposures (maximum observed concentration [C max] and area under the concentration–time curve [AUC]) of eftozanermin alfa were approximately dose-proportional across the entire dose escalation range with minimal to no accumulation in Cycle 3 versus Cycle 1 exposures. Comparable exposures and harmonic mean half-lives (35.1 h [solid tumors], 31.3 h [hematologic malignancies]) were observed between malignancy types. Exposures (dose-normalized C max and AUC) in Japanese subjects were similar to non-Japanese subjects. Furthermore, eftozanermin alfa/venetoclax combination therapy did not have an impact on the exposures of either agent. Treatment-emergent anti-drug antibodies were observed in 9.4% (13/138) of subjects. Conclusions: The study results, including a pharmacokinetic profile consistent with weekly dosing and low incidence of immunogenicity, support further investigation of eftozanermin alfa. Trial registration ID: NCT03082209.</p
    corecore