143 research outputs found

    Pulmonary Specific Ancillary Treatment for Pediatric Acute Respiratory Distress Syndrome:From the Second Pediatric Acute Lung Injury Consensus Conference

    Get PDF
    OBJECTIVES: We conducted an updated review of the literature on pulmonary-specific ancillary therapies for pediatric acute respiratory distress syndrome (PARDS) to provide an update to the Pediatric Acute Lung Injury Consensus Conference recommendations and statements about clinical practice and research. DATA SOURCES: MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION: Searches were limited to children, PARDS or hypoxic respiratory failure and overlap with pulmonary-specific ancillary therapies DATA EXTRACTION: Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS: The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize evidence and develop recommendations. Twenty-six studies were identified for full-text extraction. Four clinical recommendations were generated, related to use of inhaled nitric oxide, surfactant, prone positioning, and corticosteroids. Two good practice statements were generated on the use of routine endotracheal suctioning and installation of isotonic saline prior to endotracheal suctioning. Three research statements were generated related to: the use of open versus closed suctioning, specific methods of airway clearance, and various other ancillary therapies. CONCLUSIONS: The evidence to support or refute any of the specific ancillary therapies in children with PARDS remains low. Further investigation, including a focus on specific subpopulations, is needed to better understand the role, if any, of these various ancillary therapies in PARDS.</p

    Association between length of storage of red blood cell units and outcome of critically ill children: a prospective observational study

    Get PDF
    INTRODUCTION: Transfusion is a common treatment in pediatric intensive care units (PICUs). Studies in adults suggest that prolonged storage of red blood cell units is associated with worse clinical outcome. No prospective study has been conducted in children. Our objectives were to assess the clinical impact of the length of storage of red blood cell units on clinical outcome of critically ill children. METHODS: Prospective, observational study conducted in 30 North American centers, in consecutive patients aged \u3c18 years with a stay\u3eor= 48 hours in a PICU. The primary outcome measure was the incidence of multiple organ dysfunction syndrome after transfusion. The secondary outcomes were 28-day mortality and PICU length of stay. Odds ratios were adjusted for gender, age, number of organ dysfunctions at admission, total number of transfusions, and total dose of transfusion, using a multiple logistic regression model. RESULTS: The median length of storage was 14 days in 296 patients with documented length of storage. For patients receiving blood stored \u3eor= 14 days, the adjusted odds ratio for an increased incidence of multiple organ dysfunction syndrome was 1.87 (95% CI 1.04;3.27, P = 0.03). There was also a significant difference in the total PICU length of stay (adjusted median difference +3.7 days, P \u3c 0.001) and no significant change in mortality. CONCLUSIONS: In critically ill children, transfusion of red blood cell units stored for \u3eor= 14 days is independently associated with an increased occurrence of multiple organ dysfunction syndrome and prolonged PICU stay

    COVID-19 and children

    Get PDF
    There has been substantial research on adult COVID-19 and how to treat it. But how do severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections afflict children? The COVID-19 pandemic has yielded many surprises, not least that children generally develop less severe disease than older adults, which is unusual for a respiratory disease. However, some children can develop serious complications from COVID-19, such as multisystem inflammatory syndrome in children (MIS-C) and Long Covid, even after mild or asymptomatic COVID-19. Why this occurs in some and not others is an important question. Moreover, when children do contract COVID-19, understanding their role in transmission, especially in schools and at home, is crucial to ensuring effective mitigation measures. Therefore, in addition to nonpharmaceutical interventions, such as improved ventilation, there is a strong case to vaccinate children so as to reduce possible long-term effects from infection and to decrease transmission. But questions remain about whether vaccination might skew immune responses to variants in the long term. As the experts discuss below, more is being learned about these important issues, but much more research is needed to understand the long-term effects of COVID-19 in children

    Systemic and Lower Respiratory Tract Immunity to SARS-CoV-2 Omicron and Variants in Pediatric Severe COVID-19 and Mis-C

    Get PDF
    Mucosal immunity plays an important role in the control of viral respiratory infections like SARS-CoV-2. While systemic immune responses against the SARS-2-CoV-2 have been studied in children, there is no information on mucosal antibody response, especially in the lower respiratory tract of children coronavirus disease 2019 (COVID-19) and post-infectious multisystem inflammatory syndrome in children (MIS-C) against emerging SARS-CoV-2 variants. Therefore, we evaluated neutralizing antibody responses in paired plasma and endotracheal aspirates of pediatric severe, acute COVID-19 or MIS-C patients against SARS-CoV-2 WA1/2020, as well as against variants of concern (VOCs). Neutralizing antibody responses against the SARS-CoV-2 WA1/2020 strain in pediatric plasma were 2-fold or 35-fold higher compared with the matched endotracheal aspirate in COVID-19 or MIS-C patients, respectively. In contrast to plasma, neutralizing antibody responses against the VOCs and variants of interest (VOIs) in endotracheal aspirates were lower, with only one endotracheal aspirate demonstrating neutralizing titers against the Iota, Kappa, Beta, Gamma, and Omicron variants. In conclusion, our findings suggest that children and adolescents with severe COVID-19 or MIS-C have weak mucosal neutralizing antibodies in the trachea against circulating SARS-CoV-2 Omicron and other VOCs, which may have implications for recovery and for re-infection with emerging SARS-CoV-2 variants

    Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza

    Get PDF
    BackgroundInfluenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection.MethodsWe measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q&lt;0.05).ResultsComparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week.ConclusionThus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome
    • …
    corecore