454 research outputs found
Deforestation-induced climate change reduces carbon storage in remaining tropical forests
Biophysical effects from deforestation have the potential to amplify carbon losses but are often neglected in carbon accounting systems. Here we use both Earth system model simulations and satellite–derived estimates of aboveground biomass to assess losses of vegetation carbon caused by the influence of tropical deforestation on regional climate across different continents. In the Amazon, warming and drying arising from deforestation result in an additional 5.1 ± 3.7% loss of aboveground biomass. Biophysical effects also amplify carbon losses in the Congo (3.8 ± 2.5%) but do not lead to significant additional carbon losses in tropical Asia due to its high levels of annual mean precipitation. These findings indicate that tropical forests may be undervalued in carbon accounting systems that neglect climate feedbacks from surface biophysical changes and that the positive carbon–climate feedback from deforestation-driven climate change is higher than the feedback originating from fossil fuel emissions
Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?
During El Niño years, fires in tropical forests and peatlands in equatorial Asia create large regional smoke clouds. We characterized the sensitivity of these clouds to regional drought, and we investigated their effects on climate by using an atmospheric general circulation model. Satellite observations during 2000–2006 indicated that El Niño-induced regional drought led to increases in fire emissions and, consequently, increases in aerosol optical depths over Sumatra, Borneo and the surrounding ocean. Next, we used the Community Atmosphere Model (CAM) to investigate how climate responded to this forcing. We conducted two 30 year simulations in which monthly fire emissions were prescribed for either a high (El Niño, 1997) or low (La Niña, 2000) fire year using a satellite-derived time series of fire emissions. Our simulations included the direct and semi-direct effects of aerosols on the radiation budget within the model. We assessed the radiative and climate effects of anthropogenic fire by analyzing the differences between the high and low fire simulations. Fire aerosols reduced net shortwave radiation at the surface during August–October by 19.1&plusmn;12.9 W m<sup>&minus;2</sup> (10%) in a region that encompassed most of Sumatra and Borneo (90&deg; E–120&deg; E, 5&deg; S–5&deg; N). The reductions in net shortwave radiation cooled sea surface temperatures (SSTs) and land surface temperatures by 0.5&plusmn;0.3 and 0.4&plusmn;0.2 &deg;C during these months. Tropospheric heating from black carbon (BC) absorption averaged 20.5&plusmn;9.3 W m<sup>&minus;2</sup> and was balanced by a reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9&plusmn;0.6 mm d<sup>&minus;1</sup> (10%). The vulnerability of ecosystems to fire was enhanced because the decreases in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning in the region intensifies drought stress during El Niño
Recommended from our members
New constraints on Northern Hemisphere growing season net flux
Observations of the column-averaged dry molar mixing ratio of CO_2 above both Park Falls, Wisconsin and Kitt Peak, Arizona, together with partial columns derived from aircraft profiles over Eurasia and North America are used to estimate the seasonal integral of net ecosystem exchange (NEE) between the atmosphere and the terrestrial biosphere in the Northern Hemisphere. We find that NEE is ∼25% larger than predicted by the Carnegie Ames Stanford Approach (CASA) model. We show that the estimates of NEE may have been biased low by too weak vertical mixing in the transport models used to infer seasonal changes in Northern Hemisphere CO_2 mass from the surface measurements of CO_2 mixing ratio
An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker
We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed –0.65 PgC/yr (1 petagram = 10^15 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of –0.4 to –1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to –0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov
Recommended from our members
Interannual variation in global-scale net primary production: Testing model estimates
Testing estimates of year‐to‐year variation in global net primary production (NPP) poses some challenges. Large‐scale, multiyear records of production are not readily available for natural systems but are for agricultural systems. We use records of agricultural yields at selected sites to test NPP estimates produced by CASA, a global‐scale production model driven by both meteorological data and the satellite‐derived normalized difference vegetation index (NDVI). We also test estimates produced by the Miami model, which has underlain several analyses of biosphere response to interannual changes in climate. In addition, we test estimates against tree ring data for one boreal site for which data from both coniferous and deciduous species were available. The agricultural tests demonstrate that CASA can reasonably estimate interannual variation in production. The Miami model estimates variation more poorly. However, differences in NDVI‐processing algorithms substantially affect CASA's estimates of interannual variation. Of the four versions tested, the FASIR NDVI most closely reproduced yield data and showed the least correlation with changes in equatorial crossing time of the National Oceanic and Atmospheric Administration satellites. One issue raised is the source of the positive trends evident in CASA's NDVI‐based estimates of global NPP. The existence of these trends is consistent with potential stimulation of terrestrial production by factors such as CO2 enrichment, N fertilization, or temperature warming, but the magnitude of the global trends seen is significantly greater than suggested by constraints imposed by atmospheric fluxes
Cognition, emotion and action: persistent sources of parent–offspring paradoxes in the family business
Purpose: The purpose of the study is to explore inductively the unique paradoxical tensions central to family business (FB) and to analyze how FB's members face these tensions and their implications in the personal and professional realms. Design/methodology/approach: A multiple-case study with 11 parent–offspring dyads from Portuguese FBs was conducted putting the focus on the micro-level interactions. Findings: The slopes of roles and relationality in FBs produces three persistent sets of tensions around cognition, emotion and action. These tensions exist in a paradoxical state, containing potentiality for synergy or trade-off. Originality/value: Our study is the first to empirically demonstrate that paradoxical tensions between parent and offspring are interrelated, by emphasizing the uniqueness of FB as a paradoxical setting and offering insights to negotiating of these singular paradoxes.info:eu-repo/semantics/acceptedVersio
Seasonal comparison of beach litter on Mediterranean coastal sites (Alicante, SE Spain)
Presence of beach litter was assessed during spring and summer seasons 2018, at 56 sites along the coast of Alicante Province (SE Spain). Selected sites covered “remote” (9), “rural” (10) “village” (17) and “urban” (20) bathing areas. In an area of 201,700 m2, a total of 10,101 litter items (Avg: 0.062 items m-2) was counted in spring, and 20,857 (Avg: 0.116 items m−2) in summer. The most significant seasonal evolution was observed in the cigarette butt, group which increased from 4607 to 12843 units. Plastic represented the dominant material in both seasons (82.6 and 83.5% respectively). Litter items increased greatly during the summer season despite the increasing frequency of cleaning operations and were essentially related to beach users activities. Secondarily, beach litter was related to wastewater discharges and fishing activities. Beach litter management along investigated sites must be based on plans to reduce litter sources. For that, it is necessary to consider beach typology along with the seasonal influx of visitors to define the most appropriate management actions, not forgetting the implementation of environmental education, essential in schools and media
Recommended from our members
Trends in North American net primary productivity derived from satellite observations, 1982-1998
Net primary productivity (NPP) in North America was computed for the years 1982–1998 using the Carnegie‐Ames‐Stanford approach (CASA) carbon cycle model. CASA was driven by a new, corrected satellite record of the normalized difference vegetation index at 8‐km spatial resolution. Regional trends in the 17‐year NPP record varied substantially across the continent. Croplands and grasslands of the Central Plains and eastern Canadian forests experienced summer increases in NPP. Peak NPP trends in Alaska and western Canada occurred in late spring or early summer, suggesting an earlier onset of the growing season in these regions. Forests and woodlands of the southeastern United States showed NPP increases in spring and fall, also suggesting an increase in the length of the growing season. An analysis of climate variables showed that summer precipitation increased in the Central Plains, indicating that climate changes probably play some role in increasing NPP in this region, though intensive management of agricultural ecosystems has also increased productivity. Similarly, increased summer precipitation possibly increased NPP in eastern Canada, but another possible explanation is forest recovery after insect damage. NPP in the southeastern United States increased in the absence of climate variation. Much of this region consists of aggressively managed forests, with young stand ages and intensive silviculture resulting in increased NPP. The high latitudes of western Canada and Alaska experienced spring warming that could have increased NPP in late spring or early summer
Precision Requirements for Space-based XCO2 Data
Precision requirements have been determined for the column-averaged CO2 dry air mole fraction (X(sub CO2)) data products to be delivered by the Orbiting Carbon Observatory (OCO). These requirements result from an assessment of the amplitude and spatial gradients in X(sub CO2), the relationship between X(sub CO2) precision and surface CO2 flux uncertainties calculated from inversions of the X(sub CO2) data, and the effects of X,,Z biases on CO2 flux inversions. Observing system simulation experiments and synthesis inversion modeling demonstrate that the OCO mission design and sampling strategy provide the means to achieve the X(sub CO2) precision requirements. The impact of X(sub CO2) biases on CO2 flux uncertainties depend on their spatial and temporal extent since CO2 sources and sinks are inferred from regional-scale X(sub CO2) gradients. Simulated OCO sampling of the TRACE-P CO2 fields shows the ability of X(sub CO2) data to constrain CO2 flux inversions over Asia and distinguish regional fluxes from India and China
- …