19 research outputs found

    Valorizing the 'Irulas' traditional knowledge of medicinal plants in the Kodiakkarai Reserve Forest, India

    Get PDF
    A mounting body of critical research is raising the credibility of Traditional Knowledge (TK) in scientific studies. These studies have gained credibility because their claims are supported by methods that are repeatable and provide data for quantitative analyses that can be used to assess confidence in the results. The theoretical importance of our study is to test consensus (reliability/replicable) of TK within one ancient culture; the Irulas of the Kodiakkarai Reserve Forest (KRF), India. We calculated relative frequency (RF) and consensus factor (Fic) of TK from 120 Irulas informants knowledgeable of medicinal plants. Our research indicates a high consensus of the Irulas TK concerning medicinal plants. The Irulas revealed a diversity of plants that have medicinal and nutritional utility in their culture and specific ethnotaxa used to treat a variety of illnesses and promote general good health in their communities. Throughout history aboriginal people have been the custodians of bio-diversity and have sustained healthy life-styles in an environmentally sustainable manner. However this knowledge has not been transferred to modern society. We suggest this may be due to the asymmetry between scientific and TK, which demands a new approach that considers the assemblage of TK and scientific knowledge. A greater understanding of TK is beginning to emerge based on our research with both the Irulas and Malasars; they believe that a healthy lifestyle is founded on a healthy environment. These aboriginal groups chose to share this knowledge with society-at-large in order to promote a global lifestyle of health and environmental sustainability

    Quantification of Structural Topology in Branched Polymers

    No full text

    Branch content of metallocene polyethylene

    No full text
    ABSTRACT: Small-angle neutron scattering (SANS) is employed to investigate the structure and longchain branch (LCB) content of metallocene-catalyzed polyethylene (PE). A novel scaling approach is applied to SANS data to determine the mole fraction branch content (Ο† br ) of LCBs in PE. The approach also provides the average number of branch sites per chain (n br ) and the average number of branch sites per minimum path (n br,p ). These results yield the average branch length (z br ) and number of inner segments n i , giving further insight into the chain architecture. The approach elucidates the relationship between the structure and rheological properties of branched polymers. This SANS method is the sole analytic measure of branch-onbranch structure and average branch length for topologically complex macromolecules

    Branch content of metallocene polyethylene

    No full text
    ABSTRACT: Small-angle neutron scattering (SANS) is employed to investigate the structure and longchain branch (LCB) content of metallocene-catalyzed polyethylene (PE). A novel scaling approach is applied to SANS data to determine the mole fraction branch content (Ο† br ) of LCBs in PE. The approach also provides the average number of branch sites per chain (n br ) and the average number of branch sites per minimum path (n br,p ). These results yield the average branch length (z br ) and number of inner segments n i , giving further insight into the chain architecture. The approach elucidates the relationship between the structure and rheological properties of branched polymers. This SANS method is the sole analytic measure of branch-onbranch structure and average branch length for topologically complex macromolecules
    corecore