33 research outputs found
Functional consequences of copy number variants in miscarriage
BACKGROUND: The presence of unique copy number variations (CNVs) in miscarriages suggests that their integral genes have a role in maintaining early pregnancy. In our previous work, we identified 19 unique CNVs in ~40% of studied euploid miscarriages, which were predominantly familial in origin. In our current work, we assessed their relevance to miscarriage by expression analysis of 14 genes integral to CNVs in available miscarriage chorionic villi. As familial CNVs could cause miscarriage due to imprinting effect, we investigated the allelic expression of one of the genes (TIMP2) previously suggested to be maternally expressed in placenta and involved in placental remodelling and embryo development. RESULTS: Six out of fourteen genes had detectable expression in villi and for three genes the RNA and protein expression was altered due to maternal CNVs. These genes were integral to duplication on Xp22.2 (TRAPPC2 and OFD1) or disrupted by a duplication mapping to 17q25.3 (TIMP2). RNA and protein expression was increased for TRAPPC2 and OFD1 and reduced for TIMP2 in carrier miscarriages. The three genes have roles in processes important for pregnancy development such as extracellular matrix homeostasis (TIMP2 and TRAPPC2) and cilia function (OFD1). TIMP2 allelic expression was not affected by the CNV in miscarriages in comparison to control elective terminations. CONCLUSION: We propose that functional studies of CNVs could help determine if and how the miscarriage CNVs affect the expression of integral genes. In case of parental CNVs, assessment of the function of their integral genes in parental reproductive tissues should be also considered in the future, especially if they affect processes relevant for pregnancy development and support. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13039-015-0109-8) contains supplementary material, which is available to authorized users
16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 Ă 10â6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 Ă 10â4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R
The role of MAGT1 in genetic syndromes
Disturbances in magnesium homeostasis, often linked to altered expression and/or function of magnesium channels, have been implicated in a plethora of diseases. This review focuses on magnesium transporter 1 (MAGT1), as recently described changes in this gene have further extended our understanding of the role of magnesium in human health and disease. The identification of genetic changes and their functional consequences in patients with immunodeficiency revealed that magnesium and MAGT1 are key molecular players for T cell-mediated immune responses. This led to the description of XMEN (X-linked immunodeficiency with magnesium defect, Epstein Barr Virus infection, and neoplasia) syndrome, for which Mg2+ supplementation has been shown to be beneficial. Similarly, the identification of a copy-number variation (CNV) leading to dysfunctional MAGT1 in a family with atypical ATRX syndrome and skin abnormalities, suggested that the MAGT1 defect could be responsible for the cutaneous problems. On the other hand, recent genetic investigations question the previously proposed role for MAGT1 in intellectual disability. Understanding the molecular basis of the involvement of magnesium and its channels in human pathogenesis will improve opportunities for Mg2+ therapies in the clinic
miRNA and miRNA target genes in copy number variations occurring in individuals with intellectual disability
Background:
MicroRNAs (miRNAs) are a family of short, non-coding RNAs modulating expression of human protein coding genes (miRNA target genes). Their dysfunction is associated with many human diseases, including neurodevelopmental disorders. It has been recently shown that genomic copy number variations (CNVs) can cause aberrant expression of integral miRNAs and their target genes, and contribute to intellectual disability (ID).
Results
To better understand the CNV-miRNA relationship in ID, we investigated the prevalence and function of miRNAs and miRNA target genes in five groups of CNVs. Three groups of CNVs were from 213 probands with ID (24 de novo CNVs, 46 familial and 216 common CNVs), one group of CNVs was from a cohort of 32 cognitively normal subjects (67 CNVs) and one group of CNVs represented 40 ID related syndromic regions listed in DECIPHER (30 CNVs) which served as positive controls for CNVs causing or predisposing to ID. Our results show that 1). The number of miRNAs is significantly higher in de novo or DECIPHER CNVs than in familial or common CNV subgroups (Pâ<â0.01). 2). miRNAs with brain related functions are more prevalent in de novo CNV groups compared to common CNV groups. 3). More miRNA target genes are found in de novo, familial and DECIPHER CNVs than in the common CNV subgroup (Pâ<â0.05). 4). The MAPK signaling cascade is found to be enriched among the miRNA target genes from de novo and DECIPHER CNV subgroups.
Conclusions
Our findings reveal an increase in miRNA and miRNA target gene content in de novo versus common CNVs in subjects with ID. Their expression profile and participation in pathways support a possible role of miRNA copy number change in cognition and/or CNV-mediated developmental delay. Systematic analysis of expression/function of miRNAs in addition to coding genes integral to CNVs could uncover new causes of ID.Medical Genetics, Department ofMedicine, Faculty ofPathology and Laboratory Medicine, Department ofOther UBCReviewedFacult
Exome sequencing identifies pathogenic variants of VPS13B in a patient with familial 16p11.2 duplication
Background:
The recurrent microduplication of 16p11.2 (dup16p11.2) is associated with a broad spectrum of neurodevelopmental disorders (NDD) confounded by incomplete penetrance and variable expressivity. This inter- and intra-familial clinical variability highlights the importance of personalized genetic counselling in individuals at-risk.
Case presentation:
In this study, we performed whole exome sequencing (WES) to look for other genomic alterations that could explain the clinical variability in a family with a boy presenting with NDD who inherited the dup16p11.2 from his apparently healthy mother. We identified novel splicing variants of VPS13B (8q22.2) in the proband with compound heterozygous inheritance. Two VPS13B mutations abolished the canonical splice sites resulting in low RNA expression in transformed lymphoblasts of the proband. VPS13B mutation causes Cohen syndrome (CS) consistent with the probandâs phenotype (intellectual disability (ID), microcephaly, facial gestalt, retinal dystrophy, joint hypermobility and neutropenia).
The new diagnosis of CS has important health implication for the proband, provides the opportunity for more meaningful and accurate genetic counselling for the family; and underscores the importance of longitudinally following patients for evolving phenotypic features.
Conclusions:
This is the first report of a co-occurrence of pathogenic variants with familial dup16p11.2. Our finding suggests that the variable expressivity among carriers of rare putatively pathogenic CNVs such as dup16p11.2 warrants further study by WES and individualized genetic counselling of families with such CNVs.Medicine, Faculty ofOther UBCNon UBCMedical Genetics, Department ofPathology and Laboratory Medicine, Department ofReviewedFacult
Large-scale copy number variants (CNVs): Distribution in normal subjects and FISH/real-time qPCR analysis
Background:
Genomic copy number variants (CNVs) involving >1 kb of DNA have recently been found to be widely distributed throughout the human genome. They represent a newly recognized form of DNA variation in normal populations, discovered through screening of the human genome using high-throughput and high resolution methods such as array comparative genomic hybridization (array-CGH). In order to understand their potential significance and to facilitate interpretation of array-CGH findings in constitutional disorders and cancers, we studied 27 normal individuals (9 Caucasian; 9 African American; 9 Hispanic) using commercially available 1 Mb resolution BAC array (Spectral Genomics). A selection of CNVs was further analyzed by FISH and real-time quantitative PCR (RT-qPCR).
Results:
A total of 42 different CNVs were detected in 27 normal subjects. Sixteen (38%) were not previously reported. Thirteen of the 42 CNVs (31%) contained 28 genes listed in OMIM. FISH analysis of 6 CNVs (4 previously reported and 2 novel CNVs) in normal subjects resulted in the confirmation of copy number changes for 1 of 2 novel CNVs and 2 of 4 known CNVs. Three CNVs tested by FISH were further validated by RT-qPCR and comparable data were obtained. This included the lack of copy number change by both RT-qPCR and FISH for clone RP11-100C24, one of the most common known copy number variants, as well as confirmation of deletions for clones RP11-89M16 and RP5-1011O17.
Conclusion:
We have described 16 novel CNVs in 27 individuals. Further study of a small selection of CNVs indicated concordant and discordant array vs. FISH/RT-qPCR results. Although a large number of CNVs has been reported to date, quantification using independent methods and detailed cellular and/or molecular assessment has been performed on a very small number of CNVs. This information is, however, very much needed as it is currently common practice to consider CNVs reported in normal subjects as benign changes when detected in individuals affected with a variety of developmental disorders.Medical Genetics, Department ofMedicine, Faculty ofPathology and Laboratory Medicine, Department ofNon UBCReviewedFacult
Functional consequences of copy number variants in miscarriage
Background:
The presence of unique copy number variations (CNVs) in miscarriages suggests that their integral genes have a role in maintaining early pregnancy. In our previous work, we identified 19 unique CNVs in ~40% of studied euploid miscarriages, which were predominantly familial in origin. In our current work, we assessed their relevance to miscarriage by expression analysis of 14 genes integral to CNVs in available miscarriage chorionic villi. As familial CNVs could cause miscarriage due to imprinting effect, we investigated the allelic expression of one of the genes (TIMP2) previously suggested to be maternally expressed in placenta and involved in placental remodelling and embryo development.
Results:
Six out of fourteen genes had detectable expression in villi and for three genes the RNA and protein expression was altered due to maternal CNVs. These genes were integral to duplication on Xp22.2 (TRAPPC2 and OFD1) or disrupted by a duplication mapping to 17q25.3 (TIMP2). RNA and protein expression was increased for TRAPPC2 and OFD1 and reduced for TIMP2 in carrier miscarriages. The three genes have roles in processes important for pregnancy development such as extracellular matrix homeostasis (TIMP2 and TRAPPC2) and cilia function (OFD1). TIMP2 allelic expression was not affected by the CNV in miscarriages in comparison to control elective terminations.
Conclusion:
We propose that functional studies of CNVs could help determine if and how the miscarriage CNVs affect the expression of integral genes. In case of parental CNVs, assessment of the function of their integral genes in parental reproductive tissues should be also considered in the future, especially if they affect processes relevant for pregnancy development and support.Medical Genetics, Department ofMedicine, Faculty ofObstetrics and Gynaecology, Department ofPathology and Laboratory Medicine, Department ofReviewedFacult