17 research outputs found

    Mapping the Antigenicity of the Parasites in Leishmania donovani Infection by Proteome Serology

    Get PDF
    BACKGROUND: Leishmaniasis defines a cluster of protozoal diseases with diverse clinical manifestations. The visceral form caused by Leishmania donovani is the most severe. So far, no vaccines exist for visceral leishmaniasis despite indications of naturally developing immunity, and sensitive immunodiagnostics are still at early stages of development. METHODOLOGY/PRINCIPLE FINDINGS: Establishing a proteome-serological methodology, we mapped the antigenicity of the parasites and the specificities of the immune responses in human leishmaniasis. Using 2-dimensional Western blot analyses with sera and parasites isolated from patients in India, we detected immune responses with widely divergent specificities for up to 330 different leishmanial antigens. 68 antigens were assigned to proteins in silver- and fluorochrome-stained gels. The antigenicity of these proteins did not correlate with the expression levels of the proteins. Although some antigens are shared among different parasite isolates, there are extensive differences and no immunodominant antigens, but indications of antigenic drift in the parasites. Six antigens were identified by mass spectrometry. CONCLUSIONS/SIGNIFICANCE: Proteomics-based dissection of the serospecificities of leishmaniasis patients provides a comprehensive inventory of the complexity and interindividual heterogeneity of the host-responses to and variations in the antigenicity of the Leishmania parasites. This information can be instrumental in the development of vaccines and new immune monitoring and diagnostic devices

    Leishmania donovani Isolates with Antimony-Resistant but Not -Sensitive Phenotype Inhibit Sodium Antimony Gluconate-Induced Dendritic Cell Activation

    Get PDF
    The inability of sodium antimony gluconate (SAG)-unresponsive kala-azar patients to clear Leishmania donovani (LD) infection despite SAG therapy is partly due to an ill-defined immune-dysfunction. Since dendritic cells (DCs) typically initiate anti-leishmanial immunity, a role for DCs in aberrant LD clearance was investigated. Accordingly, regulation of SAG-induced activation of murine DCs following infection with LD isolates exhibiting two distinct phenotypes such as antimony-resistant (SbRLD) and antimony-sensitive (SbSLD) was compared in vitro. Unlike SbSLD, infection of DCs with SbRLD induced more IL-10 production and inhibited SAG-induced secretion of proinflammatory cytokines, up-regulation of co-stimulatory molecules and leishmanicidal effects. SbRLD inhibited these effects of SAG by blocking activation of PI3K/AKT and NF-κB pathways. In contrast, SbSLD failed to block activation of SAG (20 µg/ml)-induced PI3K/AKT pathway; which continued to stimulate NF-κB signaling, induce leishmanicidal effects and promote DC activation. Notably, prolonged incubation of DCs with SbSLD also inhibited SAG (20 µg/ml)-induced activation of PI3K/AKT and NF-κB pathways and leishmanicidal effects, which was restored by increasing the dose of SAG to 40 µg/ml. In contrast, SbRLD inhibited these SAG-induced events regardless of duration of DC exposure to SbRLD or dose of SAG. Interestingly, the inhibitory effects of isogenic SbSLD expressing ATP-binding cassette (ABC) transporter MRPA on SAG-induced leishmanicidal effects mimicked that of SbRLD to some extent, although antimony resistance in clinical LD isolates is known to be multifactorial. Furthermore, NF-κB was found to transcriptionally regulate expression of murine γglutamylcysteine synthetase heavy-chain (mγGCShc) gene, presumably an important regulator of antimony resistance. Importantly, SbRLD but not SbSLD blocked SAG-induced mγGCS expression in DCs by preventing NF-κB binding to the mγGCShc promoter. Our findings demonstrate that SbRLD but not SbSLD prevents SAG-induced DC activation by suppressing a PI3K-dependent NF-κB pathway and provide the evidence for differential host-pathogen interaction mediated by SbRLD and SbSLD

    HLA Class I–Restricted T Cell Epitopes of the Kinetoplastid Membrane Protein–11 Presented by Leishmania donovani–Infected Human Macrophages

    No full text
    Visceral leishmaniasis is a protozoal disease caused by the intracellular parasites Leishmania donovani and L. chagasi/infantum, and it is usually deadly if not treated. To date, no vaccine exists for prophylaxis or immunotherapy, nor has it been established which effector mechanisms of the immune system are most instrumental against the parasites. Recent reports have suggested that CD8+ T cells, in addition to CD4+ T cells, might play major roles in the defense against infection and in the cure of the disease. To identify epitopes recognized by CD8+ T cells that can be used for immune monitoring to investigate the role of these cells in human visceral leishmaniasis, as well as in vaccine development, we scanned the entire sequence of the leishmanial protein kinetoplastid membrane protein (kmp)–11 with overlapping nonapeptides. Thirty peptides that specifically trigger interferon-g secretion by human CD8+ T cells were identified. Four T cell lines with specificities for different peptides recognize Leishmania-infected autologous macrophages, which proves that kmp-11 is processed and presented via the major histocompatibility complex class I pathway of infected cells. Kmp-11 is thus a candidate antigen for the development of T cell vaccines

    Kinetoplastid Membrane Protein-11 DNA Vaccination Induces Complete Protection against Both Pentavalent Antimonial-Sensitive and -Resistant Strains of Leishmania donovani That Correlates with Inducible Nitric Oxide Synthase Activity and IL-4 Generation: Evidence for Mixed Th1- and Th2-Like Responses in Visceral Leishmaniasis1

    No full text
    The emergence of an increasing number of Leishmania donovani strains resistant to pentavalent antimonials (SbV), the first line of treatment for visceral leishmaniasis worldwide, accounts for decreasing efficacy of chemotherapeutic interventions. A kinetoplastid membrane protein-11 (KMP-11)-encoding construct protected extremely susceptible golden hamsters from both pentavalent antimony responsive (AG83) and antimony resistant (GE1F8R) virulent L. donovani challenge. All the KMP-11 DNA vaccinated hamsters continued to survive beyond 8 mo postinfection, with the majority showing sterile protection. Vaccinated hamsters showed reversal of T cell anergy with functional IL-2 generation along with vigorous specific anti-KMP-11 CTL-like response. Cytokines known to influence Th1- and Th2-like immune responses hinted toward a complex immune modulation in the presence of a mixed Th1/Th2 response in conferring protection against visceral leishmaniasis. KMP-11 DNA vaccinated hamsters were protected by a surge in IFN-�, TNF-�, and IL-12 levels along with extreme down-regulation of IL-10. Surprisingly the prototype candidature of IL-4, known as a disease exacerbating cytokine, was found to have a positive correlation to protection. Contrary to some previous reports, inducible NO synthase was actively synthesized by macrophages of the protected hamsters with concomitant high levels of NO production. This is the first report of a vaccine conferring protection to both antimony responsive and resistant Leishmania strains reflecting several aspects of clinical visceral leishmaniasis

    KMP-11 DNA Immunization Significantly Protects against L. Donovani Infection but Requires Exogenous IL-12 as an Adjuvant for Comparable Protection against L. major

    No full text
    As vaccine potential of cross-species protection by a candidate antigen is less explored, in this study we compared cross-specific protective efficacy of KinetoplastidMembrane Protein-11 (KMP-11) as aDNAvaccine alone and in conjunction with exogenous IL-12 administration in experimental BALB/c model against two most widely prevalent forms of clinical diseases caused by Leishmania major (LM) and Leishmania donovani (LD). Whereas, KMP-11 DNA vaccination alone showed significant potential in terms of resolution of splenic and hepatic parasite burden against virulent LD challenge, it showed considerably less efficacy (<70% reduction) against virulent LM challenge in terms of presence of parasite in lymph node. Remarkably exogenous IL-12 administration in the form of IL-12 p35/p40 expression vectors or recombinant protein along with KMP-11 DNA had exactly opposing effect on protection against LM and LD. Exogenous IL-12 administration significantly increased residual LD-burden but enhanced the protective efficacy ofKMP-11DNAvaccine against LMcompared toKMP-11 immunization alone. Elucidation of effector mechanism showed KMP-11 DNA induced protection against LDwas associated with the generation of mixed Th1/Th2 response, while KMP-11/IL-12-induced comparable protection against LMwas associated with high IgG2a titre indicative of a polarized Th1 response. Exogenous IL-12 administration resulted in robust gamma interferon (IFN-�) production and suppression of IL-4 from CD4+ T cell against both LM and LD. Nevertheless protective immune responsewas only compromised against LD infection where frequency of anti-KMP-11 CTL responsewas significantly reduced after exogenous IL-12 administration. Our study provides a comparative evaluation of effector mechanisms in the assessment of cross-specific protection by KMP-11 and KMP-11/IL-12 immunization against these two prevalent forms of leishmaniasis

    Identification of New Antigens in Visceral Leishmaniasis by Expression Cloning and Immunoblotting with Sera of Kala-Azar Patients from Bihar, India.

    No full text
    Sera of kala-azar patients from Bihar, India, were used to identify Leishmania donovani antigens encoded by a phage expression library. Ten antigens were identified, five of which have not been described as leishmania antigens before. The antigens specifically react with sera of leishmania-infected patients but not of toxoplasmaor plasmodium-infected patients

    Hybrid Cell Vaccination Resolves Leishmania donovani Infection by Eliciting a Strong CD8+ Cytotoxic T-Lymphocyte Response with Concomitant Suppression of Interleukin-10 (IL-10) but Not IL-4 or IL-13▿ ‡

    Get PDF
    There is an acute dearth of therapeutic interventions against visceral leishmaniasis that is required to restore an established defective cell-mediated immune response. Hence, formulation of effective immunotherapy requires the use of dominant antigen(s) targeted to elicit a specific antiparasitic cellular immune response. We implemented hybrid cell vaccination therapy in Leishmania donovani-infected BALB/c mice by electrofusing dominant Leishmania antigen kinetoplastid membrane protein 11 (KMP-11)-transfected bone marrow-derived macrophages from BALB/c mice with allogeneic bone marrow-derived dendritic cells from C57BL/6 mice. Hybrid cell vaccine (HCV) cleared the splenic and hepatic parasite burden, eliciting KMP-11-specific major histocompatibility complex class I-restricted CD8+ cytotoxic T-lymphocyte (CTL) responses. Moreover, splenic lymphocytes of HCV-treated mice not only showed the enhancement of gamma interferon but also marked an elevated expression of the Th2 cytokines interleukin-4 (IL-4) and IL-13 at both transcriptional and translational levels. On the other hand, IL-10 production from splenic T cells was markedly suppressed as a result of HCV therapy. CD8+ T-cell depletion completely abrogated HCV-mediated immunity and the anti-KMP-11 CTL response. Interestingly, CD8+ T-cell depletion completely abrogated HCV-induced immunity, resulting in a marked increase of IL-10 but not of IL-4 and IL-13. The present study reports the first implementation of HCV immunotherapy in an infectious disease model, establishing strong antigen-specific CTL generation as a correlate of HCV-mediated antileishmanial immunity that is reversed by in vivo CD8+ T-cell depletion of HCV-treated mice. Our findings might be extended to drug-nonresponsive visceral leishmaniasis patients, as well as against multiple infectious diseases with pathogen-specific immunodominant antigens
    corecore