44 research outputs found

    Can bronchoconstriction and bronchodilatation in horses be detected using electrical impedance tomography?

    Get PDF
    Background Electrical impedance tomography (EIT) generates images of the lungs based on impedance change and was able to detect changes in airflow after histamine challenge in horses. Objectives To confirm that EIT can detect histamine‐provoked changes in airflow and subsequent drug‐induced bronchodilatation. Novel EIT flow variables were developed and examined for changes in airflow. Methods Bronchoconstriction was induced using stepwise histamine bronchoprovocation in 17 healthy sedated horses. The EIT variables were recorded at baseline, after saline nebulization (control), at the histamine concentration causing bronchoconstriction (Cmax) and 2 and 10 minutes after albuterol (salbutamol) administration. Peak global inspiratory (PIFEIT) and peak expiratory EIT (PEFEIT) flow, slope of the global expiratory flow‐volume curve (FVslope), steepest FVslope over all pixels in the lung field, total impedance change (surrogate for tidal volume; VTEIT) and intercept on the expiratory FV curve normalized to VTEIT (FVintercept/VTEIT) were indexed to baseline and analyzed for a difference from the control, at Cmax, 2 and 10 minutes after albuterol. Multiple linear regression explored the explanation of the variance of Δflow, a validated variable to evaluate bronchoconstriction using all EIT variables. Results At Cmax, PIFEIT, PEFEIT, and FVslope significantly increased whereas FVintercept/VT decreased. All variables returned to baseline 10 minutes after albuterol. The VTEIT did not change. Multivariable investigation suggested 51% of Δflow variance was explained by a combination of PIFEIT and PEFEIT. Conclusions and Clinical Importance Changes in airflow during histamine challenge and subsequent albuterol administration could be detected by various EIT flow volume variables

    Performance evaluation of electrode design and material for a large animal electrical impedance tomography belt

    Get PDF
    Background Electrical impedance tomography (EIT) produces lung ventilation images via a thoracic electrode belt. Robust electrode design and material, providing low electrode skin contact impedance (SCI), is needed in veterinary medicine. The aim of this study was to compare three EIT electrode designs and materials. Methods Simulations of cylindrical, rectangular and spiked electrode designs were used to evaluate electrode SCI as a function of electrode size, where skin contact was uneven. Gold-plated washers (EGW), zinc-plated rivets (EZR) and zinc-galvanised spikes (EZS) were assigned randomly on two interconnected EIT belts. Gel was applied to the cranial or caudal belt and placed on 17 standing cattle. SCI was recorded at baseline and 3, 5, 7, 9 and 11 minutes later. Results Simulations that involved electrodes with a greater skin contact area had lower and more uniform SCI. In cattle, SCI decreased with all electrodes over time (p < 0.01). Without gel, no difference was found between EGW and EZS, while SCI was higher for EZR (p < 0.03). With gel, SCI was lower in EGW and EZR (p < 0.026), with the SCI in EGW being the lowest (p < 0.01). Limitations Low numbers of animals and static electrode position may affect SCI. Conclusions Electrode design is important for EIT measurement, with larger electrode designs able to compensate for the use of less conductive materials. Gel is not necessary to achieve acceptable SCI in large animals

    Use of Electrical Impedance Tomography (EIT) to estimate tidal volume in Anaesthetized horses undergoing elective surgery

    Get PDF
    This study explores the application of electric impedance tomography (EIT) to estimate tidal volume (VT) by measuring impedance change per breath (∆Zbreath). Seventeen healthy horses were anaesthetised and mechanically ventilated for elective procedures requiring dorsal recumbency. Spirometric VT (VTSPIRO) and ∆Zbreath were recorded periodically; up to six times throughout anaesthesia. Part 1 assessed these variables at incremental delivered VT of 10, 12 and 15 mL/kg. Part 2 estimated VT (VTEIT) in litres from ∆Zbreath at three additional measurement points using a line of best fit obtained from Part 1. During part 2, VT was adjusted to maintain end-tidal carbon dioxide between 45–55 mmHg. Linear regression determined the correlation between VTSPIRO and ∆Zbreath (part 1). Estimated VTEIT was assessed for agreement with measured VTSPIRO using Bland Altman analysis (part 2). Marked variability in slope and intercepts was observed across horses. Strong positive correlation between ∆Zbreath and VTSPIRO was found in each horse (R2 0.9–0.99). The agreement between VTEIT and VTSPIRO was good with bias (LOA) of 0.26 (−0.36–0.88) L. These results suggest that, in anaesthetised horses, EIT can be used to monitor and estimate VT after establishing the individual relationship between these variables

    Electrical impedance tomography to measure lung ventilation distribution in healthy horses and horses with left‐sided cardiac volume overload

    Get PDF
    Background Left-sided cardiac volume overload (LCVO) can cause fluid accumulation in lung tissue changing the distribution of ventilation, which can be evaluated by electrical impedance tomography (EIT). Objectives To describe and compare EIT variables in horses with naturally occurring compensated and decompensated LCVO and compare them to a healthy cohort. Animals Fourteen adult horses, including university teaching horses and clinical cases (healthy: 8; LCVO: 4 compensated, 2 decompensated). Methods In this prospective cohort study, EIT was used in standing, unsedated horses and analyzed for conventional variables, ventilated right (VAR) and left (VAL) lung area, linear-plane distribution variables (avg-max VΔZLine, VΔZLine), global peak flows, inhomogeneity factor, and estimated tidal volume. Horses with decompensated LCVO were assessed before and after administration of furosemide. Variables for healthy and LCVO-affected horses were compared using a Mann-Whitney test or unpaired t-test and observations from compensated and decompensated horses are reported. Results Compared to the healthy horses, the LCVO cohort had significantly less VAL (mean difference 3.02; 95% confidence interval .77-5.2; P = .02), more VAR (−1.13; −2.18 to −.08; P = .04), smaller avg-max VΔZLLine (2.54; 1.07-4.00; P = .003) and VΔZLLine (median difference 5.40; 1.71-9.09; P = .01). Observation of EIT alterations were reflected by clinical signs in horses with decompensated LCVO and after administration of furosemide. Conclusions and Clinical Importance EIT measurements of ventilation distribution showed less ventilation in the left lung of horses with LCVO and might be useful as an objective assessment of the ventilation effects of cardiogenic pulmonary disease in horses

    Hypocoagulability and Platelet Dysfunction Are Exacerbated by Synthetic Colloids in a Canine Hemorrhagic Shock Model

    Get PDF
    Background: Hemorrhagic shock and volume replacement can alter coagulation. Synthetic colloids, hydroxyethyl starch (HES), and gelatin, may enhance hypocoagulability. Our primary objective was to describe the effect of four fluid products on coagulation in canine hemorrhagic shock. Our secondary objective was to compare measurements of coagulation during shock to baseline in all dogs.Methods: Anesthetized greyhounds subjected to atraumatic hemorrhage for 60 min were administered 20 mL kg−1 of either fresh whole blood (FWB), 6% HES 130/0.4, 4% succinylated gelatin (GELO), or 80 mL kg−1 of isotonic crystalloid over 20 min (n = 6 per group). Platelet closure time (PCT), rotational thromboelastometry (ROTEM) and plasma coagulation assays were measured at baseline, end of hemorrhage (shock), and 40 (T60), and 160 (T180) min after study fluid. ROTEM parameters included clotting time (CT), clot formation time (CFT), alpha angle, maximum clot firmness (MCF), lysis index at 60 min (LI60), and thrombodynamic potential index (TPI) for INTEM, EXTEM, FIBTEM (MCF only), and APTEM (LI60 only) profiles. Plasma coagulation assays included prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen concentration and activities of factor VII (FVII), factor VIII (FVIII), and von Willebrand Factor antigen (vWF). Between-group differences were tested using linear mixed models with post-hoc between-group comparisons (Bonferroni-Holm corrected). Differences between baseline and shock were tested using paired t-tests. Significance was set at P &lt; 0.05.Results: GELO showed longer PCT at T60, compared with FWB and CRYST, and at T180, compared with all other groups. HES showed longer EXTEM CT at T60, compared with all other groups. HES showed lower INTEM and EXTEM MCF at T60 and lower INTEM MCF at T180, compared with FWB. Some plasma coagulation assays showed greater hypocoagulability with HES. Comparing shock to baseline, EXTEM CT, INTEM CFT, EXTEM CFT, PT, and FVIII significantly increased and PCT, INTEM CT, INTEM MCF, EXTEM MCF, EXTEM LI60, EXTEM TPI, FIBTEM MCF, APTT, fibrinogen, FVII, and vWF significantly decreased.Conclusions: In dogs with hemorrhagic shock, volume replacement with GELO caused mild platelet dysfunction and HES was associated with coagulation changes consistent with hypocoagulability, beyond effects of hemodilution. Shock alone produced some evidence of hypocoagulability

    Thoracic Electrical Impedance Tomography—The 2022 Veterinary Consensus Statement

    Get PDF
    Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis

    Thoracic Electrical Impedance Tomography—The 2022 Veterinary Consensus Statement

    Full text link
    Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    Respiratory and cardiovascular support

    Get PDF
    Maintenance of normal oxygenation, ventilation and perfusion (the ABC of resuscitation) is essential in the neurological patient to prevent secondary neurological injury or exacerbation of the underlying condition. In addition, correction of hypoxaemia, hypercapnia and poor perfusion are the most important strategies for reducing intracranial pressure (ICP). The type and extent of supportive care required will depend on the cause of respiratory and/or cardiovascular impairment and the severity of disruption to normal oxygenation, ventilation and perfusion. Techniques for maintaining normal respiratory and cardiovascular function and, therefore, adequate oxygen delivery to the tissues are outlined in this chapter
    corecore