6,878 research outputs found

    Spanning trees for the geometry and dynamics of compact polymers

    Full text link
    Using a mapping of compact polymers on the Manhattan lattice to spanning trees, we calculate exactly the average number of bends at infinite temperature. We then find, in a high temperature approximation, the energy of the system as a function of bending rigidity and polymer elasticity. We identify the universal mechanism for the relaxation of compact polymers and then endow the model with physically motivated dynamics in the convenient framework of the trees. We find aging and domain coarsening after quenches in temperature. We explain the slow dynamics in terms of the geometrical interconnections between the energy and the dynamics.Comment: 10 pages, 8 figure

    Removal of benzotriazole by Photo-Fenton like process using nano zero-valent iron: Response surface methodology with a Box-Behnken design

    Get PDF
    In this paper, the removal of benzotriazole (BTA) was investigated by a Photo-Fenton process using nano zero valent iron (NZVI) and optimization by response surface methodology based on Box-Behnken method. Effect of operating parameters affecting removal efficiency such as H2O2, NZVI, and BTA concentrations as well as pH was studied. All the experiments were performed in the presence of ultraviolet radiation. Predicted levels and BTA removal were found to be in good agreement with the experimental levels (R2 = 0. 9500). The optimal parameters were determined at 60 min reaction time, 15 mg L-1 BTA, 0.10 g L-1 NZVI, and 1.5 mmol L-1 H2O2 for Photo-Fenton-like reaction. NZVI was characterized using X-ray diffraction (XRD), transmission electron microscope (TEM) images, and scanning electron microscope (SEM) analysis

    Inactivation of Fecal coliforms during solar and photocatalytic disinfection by zinc oxide (ZnO) nanoparticles in compound parabolic concentrators (CPCs)

    Get PDF
    Water samples of 0, 50, and 100 nephelometric turbidity units (NTU) spiked with fecal coliforms (107 CFU/ml) were exposed to natural sunshine in 1l quartz glass tubes fitted with rectors' compound parabolic concentrators CPCS at two forms CPC1 (whit nanoparticle zinc oxide) and CPC2(without nanoparticle zinc oxide). The samples were characterized using the X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). On clear days, the complete inactivation times (more than 7-log unit reduction in bacterial population) in the systems with CPC1, and CPC2 were 15, and 30 min, respectively. The maximum temperatures obtained in the water samples were 80°C for CPC1, and 82°C for CPC2. The use of CPC1 with hydroxyl radicals (OH·) production significantly improved the efficiency of the old CPCS technique, since these systems (CPC1-2) shortened the exposure times to solar radiation and also minimized the negative effects of turbidity and also regrowth was zero in the disinfected samples. Due to two simultaneous effects of high temperatures and UV, regrowth in most ways of solar disinfection was not seen in these examples. Overall, this technology has been proved to be a good enhancement method to inactivate microorganisms under real conditions and represents a good alternative technique to drinking water treatment. © 2019, Islamic Azad University
    • …
    corecore