254 research outputs found
Recommended from our members
A pragmatic patient-reported outcome strategy for rare disease clinical trials: application of the EORTC item library to myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia.
BackgroundNovel, pragmatic, patient-centered strategies are needed to ensure fit-for-purpose patient-reported outcomes (PRO) instruments in clinical trial research for rare diseases such as myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myelomonocytic leukemia (CMML). The objective of the current study was to select supplemental items to add to the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life-Core 30 (QLQ-C30) to ensure content coverage of all important clinical concepts in patients with higher-risk (HR) MDS, low-blast count (LB) AML, and CMML, thus, improving the instrument's ability to detect clinically meaningful treatment benefit for this context of use.MethodsOur mixed methods approach comprised literature review, clinician consultation (n = 3), and qualitative and quantitative analysis of two stages of patient interview data (n = 14, n = 18) to select library bank items to supplement a generic cancer PRO, the EORTC QLQ-C30.ResultsUnique symptom (n = 54) and impact (n = 72) concepts were organized into conceptual frameworks of treatment benefit, compared with EORTC QLQ-C30 items and conceptual gaps identified. Supplemental items (n = 13) addressing those gaps were selected from the EORTC Item Library and tested with patients. Supplemental item endorsement frequencies met World Health Organization Quality of Life criteria, suggesting good targeting and relevance for this sample. However, three supplemental items were confirmed as problematic based upon cognitive debriefing results, and expert clinical consultations. Ultimately, 10 supplemental items (n = 7 symptom; n = 3 impact) were selected for the MDS/AML/CMML context.ConclusionSupplemental items were selected to enhance the conceptual coverage of the EORTC QLQ-C30 in the areas of fatigue, shortness of breath, and functioning
Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy
<p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain), targeted at blunting Nuclear Factor κB (NF-κB) signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient <it>mdx </it>mice.</p> <p>Methods</p> <p>To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko) mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice.</p> <p>Results</p> <p>At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice.</p> <p>Conclusions</p> <p>We conclude that NBD can significantly improve cardiac contractile dysfunction in the dko mouse model of DMD and may thus provide a novel therapeutic treatment for heart failure.</p
Dystrophin glycoprotein complex dysfunction:a regulatory link between muscular dystrophy and cancer cachexia
SummaryCachexia contributes to nearly a third of all cancer deaths, yet the mechanisms underlying skeletal muscle wasting in this syndrome remain poorly defined. We report that tumor-induced alterations in the muscular dystrophy-associated dystrophin glycoprotein complex (DGC) represent a key early event in cachexia. Muscles from tumor-bearing mice exhibited membrane abnormalities accompanied by reduced levels of dystrophin and increased glycosylation on DGC proteins. Wasting was accentuated in tumor mdx mice lacking a DGC but spared in dystrophin transgenic mice that blocked induction of muscle E3 ubiquitin ligases. Furthermore, DGC deregulation correlated positively with cachexia in patients with gastrointestinal cancers. Based on these results, we propose that, similar to muscular dystrophy, DGC dysfunction plays a critical role in cancer-induced wasting
Cardiac Involvement in Patients With Muscular Dystrophies: Magnetic Resonance Imaging Phenotype and Genotypic Considerations
Muscular dystrophy (MD) connotes a heterogeneous group of inherited disorders characterized by progressive wasting and weakness of the skeletal muscles. In several forms of MD, cardiac dysfunction occurs, and cardiac disease may even be the predominant manifestation of the underlying genetic myopathy. Cardiologists may be unfamiliar with these diseases owing to their low incidence; also, significant advances in respiratory care have only recently unmasked cardiomyopathy as a significant cause of death in MD.1 Early detection of MD-associated cardiomyopathy is important, because institution of cardioprotective medical therapies may slow adverse cardiac remodeling and attenuate heart failure symptoms in these patients.2–6 Although ECG and echocardiography are typically advocated for screening,7,8 cardiovascular magnetic resonance (CMR) has shown promise in revealing early cardiac involvement when standard cardiac evaluation is unremarkable.9,10 This review will focus on 4 groups of skeletal muscle disease most commonly associated with cardiac complications (the Table): (1) dystrophin-associated diseases such as Duchenne and Becker (DMD and BMD, respectively), (2) Emery-Dreifuss MD (EDMD), (3) limb-girdle MD (LGMD), and (4) myotonic dystrophy (DM). View this table: Table. Characteristics of the Types of MD ### Molecular and Genetic Features DMD and BMD are X-linked disorders affecting the synthesis of dystrophin, a large, sarcolemmal protein that is absent in DMD11 and reduced in amount or abnormal in size in BMD patients.12 Dystrophin provides the connection between a large, multimeric complex of glycoproteins in the muscle cell membrane (termed the dystrophin-glycoprotein complex) and intracellular actin filaments (Figure 1), thereby transmitting forces generated by sarcomere contraction to the extracellular matrix.13,14 Correlations between dystrophin mutations and the onset of cardiomyopathy have been noted15; some mutations result in only cardiomyopathy without skeletal myopathy.16 Other proteins not shown in Figure 1 that are particularly involved in both inside-out and outside-in transmission
Selective loss of sarcolemmal nitric oxide synthase in Becker muscular dystrophy
Becker muscular dystrophy is an X-linked disease due to mutations of the dystrophin gene. We now show that neuronal-type nitric oxide synthase (nNOS), an identified enzyme in the dystrophin complex, is uniquely absent from skeletal muscle plasma membrane in many human Becker patients and in mouse models of dystrophinopathy. An NH2- terminal domain of nNOS directly interacts with alpha 1-syntrophin but not with other proteins in the dystrophin complex analyzed. However, nNOS does not associate with alpha 1-syntrophin on the sarcolemma in transgenic mdx mice expressing truncated dystrophin proteins. This suggests a ternary interaction of nNOS, alpha 1-syntrophin, and the central domain of dystrophin in vivo, a conclusion supported by developmental studies in muscle. These data indicate that proper assembly of the dystrophin complex is dependent upon the structure of the central rodlike domain and have implications for the design of dystrophin-containing vectors for gene therapy
Cell-type specific effects of mineralocorticoid receptor gene expression suggest intercellular communication regulating fibrosis in skeletal muscle disease
Introduction: Duchenne muscular dystrophy (DMD) is a fatal striated muscle degenerative disease. DMD is caused by loss of dystrophin protein, which results in sarcolemmal instability and cycles of myofiber degeneration and regeneration. Pathology is exacerbated by overactivation of infiltrating immune cells and fibroblasts, which leads to chronic inflammation and fibrosis. Mineralocorticoid receptors (MR), a type of nuclear steroid hormone receptors, are potential therapeutic targets for DMD. MR antagonists show clinical efficacy on DMD cardiomyopathy and preclinical efficacy on skeletal muscle in DMD models.Methods: We have previously generated myofiber and myeloid MR knockout mouse models to dissect cell-specific functions of MR within dystrophic muscles. Here, we compared skeletal muscle gene expression from both knockouts to further define cell-type specific signaling downstream from MR.Results: Myeloid MR knockout increased proinflammatory and profibrotic signaling, including numerous myofibroblast signature genes. Tenascin C was the most highly upregulated fibrotic gene in myeloid MR-knockout skeletal muscle and is a component of fibrosis in dystrophic skeletal muscle. Surprisingly, lysyl oxidase (Lox), canonically a collagen crosslinker, was increased in both MR knockouts, but did not localize to fibrotic regions of skeletal muscle. Lox localized within myofibers, including only a region of quadriceps muscles. Lysyl oxidase like 1 (Loxl1), another Lox family member, was increased only in myeloid MR knockout muscle and localized specifically to fibrotic regions.Discussion: This study suggests that MR signaling in the dystrophic muscle microenvironment involves communication between contributing cell types and modulates inflammatory and fibrotic pathways in muscle disease
Postnatal Brain Trajectories and Maternal Intelligence Predict Childhood Outcomes in Complex CHD
Objective: To determine whether early structural brain trajectories predict early childhood neurodevelopmental deficits in complex CHD patients and to assess relative cumulative risk profiles of clinical, genetic, and demographic risk factors across early development.
Study Design: Term neonates with complex CHDs were recruited at Texas Children’s Hospital from 2005–2011. Ninety-five participants underwent three structural MRI scans and three neurodevelopmental assessments. Brain region volumes and white matter tract fractional anisotropy and radial diffusivity were used to calculate trajectories: perioperative, postsurgical, and overall. Gross cognitive, language, and visuo-motor outcomes were assessed with the Bayley Scales of Infant and Toddler Development and with the Wechsler Preschool and Primary Scale of Intelligence and Beery–Buktenica Developmental Test of Visual–Motor Integration. Multi-variable models incorporated risk factors.
Results: Reduced overall period volumetric trajectories predicted poor language outcomes: brainstem ((β, 95% CI) 0.0977, 0.0382–0.1571; p = 0.0022) and white matter (0.0023, 0.0001–0.0046; p = 0.0397) at 5 years; brainstem (0.0711, 0.0157–0.1265; p = 0.0134) and deep grey matter (0.0085, 0.0011–0.0160; p = 0.0258) at 3 years. Maternal IQ was the strongest contributor to language variance, increasing from 37% at 1 year, 62% at 3 years, and 81% at 5 years. Genetic abnormality’s contribution to variance decreased from 41% at 1 year to 25% at 3 years and was insignificant at 5 years. Conclusion: Reduced postnatal subcortical–cerebral white matter trajectories predicted poor early childhood neurodevelopmental outcomes, despite high contribution of maternal IQ. Maternal IQ was cumulative over time, exceeding the influence of known cardiac and genetic factors in complex CHD, underscoring the importance of heritable and parent-based environmental factors
Adherence to dietary recommendations by socioeconomic status in the United Kingdom biobank cohort study
Understanding how socioeconomic markers interact could inform future policies aimed at increasing adherence to a healthy diet. This cross-sectional study included 437,860 participants from the UK Biobank. Dietary intake was self-reported. Were used as measures socioeconomic education level, income and Townsend deprivation index. A healthy diet score was defined using current dietary recommendations for nine food items and one point was assigned for meeting the recommendation for each. Good adherence to a healthy diet was defined as the top 75th percentile, while poor adherence was defined as the lowest 25th percentile. Poisson regression was used to investigate adherence to dietary recommendations. There were significant trends whereby diet scores tended to be less healthy as deprivation markers increased. The diet score trends were greater for education compared to area deprivation and income. Compared to participants with the highest level of education, those with the lowest education were found to be 48% less likely to adhere to a healthy diet (95% Confidence Interval [CI]: 0.60-0.64). Additionally, participants with the lowest income level were 33% less likely to maintain a healthy diet (95% CI: 0.73-0.81), and those in the most deprived areas were 13% less likely (95% CI: 0.84-0.91). Among the three measured proxies of socioeconomic statuseducation, income, and area deprivationlow education emerged as the strongest factor associated with lower adherence to a healthy diet
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …