9 research outputs found

    Les isotopes du fer dans l'eau de mer : un nouveau traceur de la biogéochimie océanique

    Get PDF
    Le fer constitue un élément essentiel pour la croissance du phytoplancton en milieu marin. Il est en effet l'élément limitant pour la production primaire dans de nombreuses régions océaniques et, de fait, est impliqué dans le cycle du carbone de la planète. Pourtant, son cycle biogéochimique est encore très mal connu. Les poussières atmosphériques et les sédiments des marges continentales sont considérés à l'heure actuelle comme les deux principales sources potentielles de fer à l'océan ouvert de surface. Ces deux sources ayant montré des compositions isotopiques très contrastées, les isotopes du fer dans la colonne d'eau ont été pressentis comme un traceur prometteur de ces sources. Outre ces apports à l'océan, le fer subit une multitude de processus de transferts entre les différentes formes physico-chimiques sous lesquelles il est présent dans la colonne d'eau. Certains de ces processus étudiés in vitro semblent être à l'origine d'un fractionnement des isotopes du fer. Par conséquent l'étude des isotopes du fer dans la colonne d'eau pourrait aussi nous permettre de clarifier ces échanges. Au commencement de ma thèse, aucune mesure des isotopes du fer dissous dans l'océan n'avait encore été réalisée. Une telle mesure impliquait un réel défi analytique dans la mesure où les quantités de fer disponibles dans un échantillon d'eau de mer sont très faibles alors que la matrice salée dans laquelle il réside est très concentrée. Nous avons donc développé une méthode de mesure des isotopes du fer dissous dans des eaux de mer appauvries en fer, satisfaisant aux exigences requises, à savoir un bon rendement, un blanc de quelques ng, une élimination de la matrice et un moyen précis de corriger des fractionnements isotopiques tout au long de la procédure. Le succès de l'intercalibration du programme GEOTRACES constitue une validation supplémentaire de notre méthode. Cette méthode a permis d'obtenir les premières données de compositions isotopiques (CI) de fer dissous dans l'océan. Nous avons également documenté les particules en suspension, pour lesquelles aucune mesure de compositions isotopiques n'avait encore été réalisée. L'analyse des résultats de ces deux fractions montre des variations systématiques et significatives de d56Fe, dont les valeurs sont comprises entre -0.71 et +0.58‰ avec une précision de ±0.08‰ (2s), les plus grandes variations étant observées dans la phase dissoute. A travers des régions étudiées très contrastées, des tendances cohérentes (énoncées ci-après) ont permis de dégager des premières interprétations sur le cycle des isotopes du fer dans l'océan. En dessous de la couche de surface, les variations de CI observées sont à la fois cohérentes i) avec la circulation océanique, i.e., on retrouve des CI semblables dans une même masse d'eau échantillonnée à des sites distants de plusieurs milliers de km, mais semble aussi en cohérence avec ii) les propriétés biogéochimiques de la colonne d'eau. Nous suggérons l'existence de fractionnements isotopiques associés à l'activité phytoplanctonique, à la reminéralisation ainsi qu'aux échanges de sorption, chacun de ces fractionnements présentant une amplitude relativement faible par rapport à certains rapportés dans la littérature. Alors que le mécanisme sédimentaire délivrant du fer dans la colonne d'eau était jusqu'à présent supposé être principalement la dissolution par réduction bactérienne (caractérisé par delta diss-part˜-3 to -1‰), nos résultats soulignent l'importance d'un autre processus sédimentaire : une dissolution non-réductrice du sédiment dans l'eau de mer, caractérisée par un fractionnement isotopique moyen de delta diss-part˜+0.2‰, générant des signatures isotopiques lourdes dans la phase dissoute. Par ailleurs, nos mesures de d56Fe dans les aérosols suggèrent que leur signature isotopique est plus variable qu'auparavant admis, et serait comprise entre la valeur crustale et 0.5‰. Enfin l'étude couplée des CI dans la phase dissoute et particulaire met en évidence la forte interaction qui existe entre ces deux phases, à la fois en milieux abrités d'apports lithogéniques où s'expriment les processus du cycle interne du fer, mais aussi après injection de particules lithogénique qui impriment une signature spécifique dans les masses d'eau. Ainsi les isotopes du fer dans la colonne d'eau constituent un outil très prometteur pour l'étude du cycle du fer dans l'océan.Iron is an essential micro-nutrient for phytoplankton growth in the ocean. In broad areas of the ocean, iron limits primary production and therefore plays a role in the carbon cycle. However many questions remain about its marine cycle. Dusts and sediments are considered as the principal sources of iron to the surface open ocean. Because both sources display distinct iron isotopic compositions, iron isotopes in seawater were suggested as a promising new tracer of theses sources. In addition, iron undergoes numerous exchange processes between the various physical and chemical forms coexisting in the water column. Some of these processes have shown isotopic fractionations through in vitro experiments. Iron isotopes in the water column could also help to clarify these processes. At the beginning of my PhD, no dissolved iron isotopes measurements had been performed in the ocean. Because of the very low iron content and the concentrated salty matrix of a seawater sample, such a measurement represented a real analytical challenge. The recovery had to be high enough, with a blank of only a few ng, the matrix had to be efficiently removed and we needed a precise method to correct for the isotopic fractionation occurring during the procedure. We did develop such a method to measure iron isotopes in Fe-depleted seawater satisfying all of these requirements. The successful GEOTRACES intercalibration exercise contributed to validate our method. This method allowed acquiring the first data of dissolved iron isotopes in ocean. We also measured iron isotopes in suspended particles of the seawater, a measurement never performed either so far. The observed d56Fe variations are significant and range from -0.71 to +0.58‰ with a precision of ±0.08‰ (2s), the largest variations being in the dissolved phase. Through several oceanic regional studies, first interpretations of the iron isotope cycle in the ocean are highlighted. Below the surface layer of the water column, the Fe isotopic compositions (IC) seem consistent with i) the oceanic circulation, since similar d56Fe are found in the same water masses sampled at locations separated by more than 4000 km,, and ii) with the biogeochemical properties of the water column. Isotopic fractionation associated with primary production, remineralization and sorption exchanges are suggested. All these processes would display moderated isotopic fractionations. The parallel study of particulate and dissolved Fe IC underlines the efficiency of the dissolved-particulate exchanges. Whereas the mechanism responsible for sedimentary Fe supplies had been widely proposed to be bacterial reductive dissolution so far (characterized by delta diss-part˜ -3 to -1‰), our results suggest the significance of a different process, the non-reductive dissolution of sediments in seawater, displaying a mean fractionation of delta diss-part˜ +0.2‰, releasing heavy iron in the dissolved phase. New isotopic signatures of iron sources were also identified. d56Fe of ~0.5‰ in our aerosol samples suggests that the atmospheric iron signature is more variable than expected, from ~0.1‰ to 0.5‰. Finally, the combination of DFe and PFe isotopic data shows strong interactions between these 2 fractions. Close to the continental margin, the seawater would get a new isotopic signature from the lithogenic particles whereas far from the sources, the internal processes induced fractionations are revealed. Even though the behavior of iron isotopes in the ocean is still not well understood, the Fe IC in the dissolved and particulate phases of seawater provide new insight into the iron cycle

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Les isotopes du fer dans l'eau de mer (un nouveau traceur de la biogéochimie océanique)

    Full text link
    TOULOUSE3-BU Sciences (315552104) / SudocTOULOUSE-Observ. Midi Pyréné (315552299) / SudocSudocFranceF

    Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean

    Full text link
    As an essential micronutrient, iron plays a key role in oceanic biogeochemistry. It is therefore linked to the global carbon cycle and climate. Here, we report a dissolved iron (DFe) isotope section in the South Atlantic and Southern Ocean. Throughout the section, a striking DFe isotope minimum (light iron) is observed at intermediate depths (200–1,300 m), contrasting with heavier isotopic composition in deep waters. This unambiguously demonstrates distinct DFe sources and processes dominating the iron cycle in the intermediate and deep layers, a feature impossible to see with only iron concentration data largely used thus far in chemical oceanography. At intermediate depths, the data suggest that the dominant DFe sources are linked to organic matter remineralization, either in the water column or at continental margins. In deeper layers, however, abiotic non-reductive release of Fe (desorption, dissolution) from particulate iron—notably lithogenic—likely dominates. These results go against the common but oversimplified view that remineralization of organic matter is the major pathway releasing DFe throughout the water column in the open ocean. They suggest that the oceanic iron cycle, and therefore oceanic primary production and climate, could be more sensitive than previously thought to continental erosion (providing lithogenic particles to the ocean), particle transport within the ocean, dissolved/particle interactions, and deep water upwelling. These processes could also impact the cycles of other elements, including nutrients

    GEOTRACES IC1 (BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration

    Get PDF
    We report data on the isotopic composition of cadmium, copper, iron, lead, zinc, and molybdenum at the GEOTRACES IC1 BATS Atlantic intercalibration station. In general, the between lab and within-lab precisions are adequate to resolve global gradients and vertical gradients at this station for Cd, Fe, Pb, and Zn. Cd and Zn isotopes show clear variations in the upper water column and more subtle variations in the deep water; these variations are attributable, in part, to progressive mass fractionation of isotopes by Rayleigh distillation from biogenic uptake and/or adsorption. Fe isotope variability is attributed to heavier crustal dust and hydrothermal sources and light Fe from reducing sediments. Pb isotope variability results from temporal changes in anthropogenic source isotopic compositions and the relative contributions of U.S. and European Pb sources. Cu and Mo isotope variability is more subtle and close to analytical precision. Although the present situation is adequate for proceeding with GEOTRACES, it should be possible to improve the within-lab and between-lab precisions for some of these properties

    Starlikeness of Libera transformation (II) (Applications of Complex Function Theory to Differential Equations)

    Get PDF
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González

    Global economic burden of unmet surgical need for appendicitis

    Full text link
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Global economic burden of unmet surgical need for appendicitis

    Full text link
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    The GEOTRACES Intermediate Data Product 2017

    Full text link
    Unidad de excelencia María de Maeztu MdM-2015-0552The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González
    corecore