26 research outputs found
Post-Translational Loss of Renal TRPV5 Calcium Channel Expression, Ca2+ Wasting, and Bone Loss in Experimental Colitis
Dysregulated Ca2+ homeostasis likely contributes to the etiology of IBD-associated loss of bone mineral density (BMD). Experimental colitis leads to decreased expression of Klotho, a protein which supports renal Ca2+ reabsorption by stabilizing TRPV5 channel on the apical membrane of distal tubule epithelial cells
Quercetin abrogates chemoresistance in melanoma cells by modulating ΔNp73
<p>Abstract</p> <p>Background</p> <p>The alkylating agent Dacarbazine (DTIC) has been used in the treatment of melanoma for decades, but when used as a monotherapy for cancer only moderate response rates are achieved. Recently, the clinical use of Temozolomide (TMZ) has become the more commonly used analog of DTIC-related oral agents because of its greater bioavailability and ability to cross the blood brain barrier. The response rates achieved by TMZ are also unsatisfactory, so there is great interest in identifying compounds that could be used in combination therapy. We have previously demonstrated that the bioflavonoid quercetin (Qct) promoted a p53-mediated response and sensitized melanoma to DTIC. Here we demonstrate that Qct also sensitizes cells to TMZ and propose a mechanism that involves the modulation of a truncated p53 family member, ΔNp73.</p> <p>Methods</p> <p>DB-1 melanoma (p53 wildtype), and SK Mel 28 (p53 mutant) cell lines were treated with TMZ (400 μM) for 48 hrs followed by Qct (75 μM) for 24 hrs. Cell death was determined by Annexin V-FITC staining and immunocytochemical analysis was carried out to determine protein translocation.</p> <p>Results</p> <p>After treatment with TMZ, DB-1 cells demonstrated increased phosphorylation of Ataxia telangiectasia mutated (ATM) and p53. However, the cells were resistant to TMZ-induced apoptosis and the resistance was associated with an increase in nuclear localization of ΔNp73. Qct treatment in combination with TMZ abolished drug insensitivity and caused a more than additive induction of apoptosis compared to either treatment alone. Treatment with Qct, caused redistribution of ΔNp73 into the cytoplasm and nucleus, which has been associated with increased p53 transcriptional activity. Knockdown of ΔNp73 restored PARP cleavage in the TMZ treated cells, confirming its anti-apoptotic role. The response to treatment was predominantly p53 mediated as the p53 mutant SK Mel 28 cells showed no significant enhancement of apoptosis.</p> <p>Conclusion</p> <p>This study demonstrates that Qct can sensitize cells to TMZ and that the mechanisms of sensitization involve modulation of p53 family members.</p
14-3-3gamma induces oncogenic transformation by stimulating MAP kinase and PI3K signaling.
The 14-3-3 proteins are a set of highly conserved scaffolding proteins that have been implicated in the regulation of a variety of important cellular processes such as the cell cycle, apoptosis and mitogenic signaling. Recent evidence indicates that the expression of some of the family members is elevated in human cancers suggesting that they may play a role in tumorigenesis. In the present study, the oncogenic potential of 14-3-3gamma was shown by focus formation and tumor formation in SCID mice using 14-3-3gamma transfected NIH3T3 mouse fibroblast cells. In contrast, 14-3-3sigma, a putative tumor suppressor, inhibited NIH3T3 transformation by H-ras and c-myc. We also report that activation of both MAP kinase and PI3K signaling pathways are essential for transformation by 14-3-3gamma. In addition, we found that 14-3-3gamma interacts with phosphatidylinositol 3-kinase (PI3K) and TSC2 proteins indicating that it could stimulate PI3K signaling by acting at two points in the signaling pathway. Overall, our studies establish 14-3-3gamma as an oncogene and implicate MAPK and PI3K signaling as important for 14-3-3gamma induced transformation
P53 suppresses expression of the 14-3-3gamma oncogene
Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC). Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.</p
Hsf1 Is Required for the Nuclear Translocation of p53 Tumor Suppressor
Although the p53 tumor suppressor is most frequently inactivated by genetic mutations, exclusion from the nucleus is also seen in human tumors. We have begun to examine p53 nuclear importation by isolating a series of mutant cells in which the temperature-sensitive murine p53Val135 mutant is sequestered in the cytoplasm. We previously showed that that three of them (ALTR12, ALTR19, and ALTR25) constituted a single complementation group. Here, we found that ALTR12 cells are more sensitive to heat stress than either ALTR19 or ALTR25 and that there was a complete lack of induction of Hsp70 in response to heat shock. Western blot analysis showed no expression of the Hsf1 transcription factor, and neither heat shock nor azetidine could induce p53 nuclear localization in ALTR12 cells but did in parental A1–5 cells. Suppression of Hsf1 in A1–5 cells with quercetin or an Hsf1 siRNA reduced p53 nuclear importation and inhibited p53-mediated activation of a p21 reporter. Most convincingly, p53 nuclear importation could be restored in ALTR12 cells by introducing an exogenous Hsf1 gene. Collectively, our result suggests that Hsf1 is required for p53 nuclear importation and activation and implies that heat shock factors play a role in the regulation of p53