13 research outputs found

    Transient Alteration of Cellular Redox Buffering before Irradiation Triggers Apoptosis in Head and Neck Carcinoma Stem and Non-Stem Cells

    Get PDF
    Background: Head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy owing to intrinsic radioresistance and lack of induction of apoptosis. The major focus of this work was to design a transient glutathione depleting strategy during the course of irradiation of HNSCC in order to overcome their radioresistance associated with redox adaptation. Methodology/Principal Findings: Treatment of SQ20B cells with dimethylfumarate (DMF), a GSH-depleting agent, and L-Buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis 4 h before a 10 Gy irradiation led to the lowering of the endogenous GSH content to less than 10 % of that in control cells and to the triggering of radiation-induced apoptotic cell death. The sequence of biochemical events after GSH depletion and irradiation included ASK-1 followed by JNK activation which resulted in the triggering of the intrinsic apoptotic pathway through Bax translocation to mitochondria. Conclusions: This transient GSH depletion also triggered radiation-induced cell death in SQ20B stem cells, a key event to overcome locoregional recurrence of HNSCC. Finally, our in vivo data highlight the relevance for further clinical trials o

    In Vivo Ethanol Experience Increases D2 Autoinhibition in the Ventral Tegmental Area

    No full text
    Alcoholism is characterized by compulsive alcohol intake after a history of chronic consumption. A reduction in mesolimbic dopaminergic transmission observed during abstinence may contribute to the negative affective state that drives compulsive intake. Although previous in vivo recording studies in rodents have demonstrated profound decreases in the firing activity of ventral tegmental area (VTA) dopamine neurons after withdrawal from long-term ethanol exposure, the cellular mechanisms underlying this reduced activity are not well understood. Somatodendritic dopamine release within the VTA exerts powerful feedback inhibition of dopamine neuron activity via stimulation of D2 autoreceptors and subsequent activation of G protein-gated inwardly rectifying K+ (GIRK) channels. Here, by performing patch-clamp recordings from putative dopamine neurons in the VTA of mouse brain slices, we show that D2 receptor/GIRK-mediated inhibition becomes more potent and exhibits less desensitization after withdrawal from repeated in vivo ethanol exposure (2 g/kg, i.p., three times daily for 7 days). In contrast, GABAB receptor/GIRK-mediated inhibition and its desensitization are not affected. Chelating cytosolic Ca2+ with BAPTA augments D2 inhibition and suppresses its desensitization in control mice, while these effects of BAPTA are occluded in ethanol-treated mice. Furthermore, inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ release and Ca2+/calmodulin-dependent protein kinase II are selectively involved in the desensitization of D2, but not GABAB, receptor signaling. Consistent with this, activation of metabotropic glutamate receptors that are coupled to IP3 generation leads to cross-desensitization of D2/GIRK-mediated responses. We propose that enhancement of D2 receptor-mediated autoinhibition via attenuation of a Ca2+-dependent desensitization mechanism may contribute to the hypodopaminergic state during ethanol withdrawal

    Ascidians as models for studying invasion success

    No full text

    Control of Polymicrobial Biofilms: Recent Trends

    No full text
    corecore