53 research outputs found

    Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer

    Get PDF
    We conducted a phase I pharmacokinetic dose escalation study of a recombinant humanized anti-p185HER2 monoclonal antibody (MKC-454) in 18 patients with metastatic breast cancer refractory to chemotherapy. Three or six patients at each dose level received 1, 2, 4 and 8 mg kg–1 of MKC-454 as 90-min intravenous infusions. The first dose was followed in 3 weeks by nine weekly doses. Target trough serum concentration has been set at 10 μg ml–1 based on in vitro observations. The mean value of minimum trough serum concentrations at each dose level were 3.58 ± 0.63, 6.53 ± 5.26, 40.2 ± 7.12 and 87.9 ± 23.5 μg ml–1 respectively. At 2 mg kg–1, although minimum trough serum concentrations were lower than the target trough concentration with a wide range of variation, trough concentrations increased and exceeded the target concentration, as administrations were repeated weekly. Finally 2 mg kg–1 was considered to be sufficient to achieve the target trough concentration by the weekly dosing regimen. One patient receiving 1 mg kg–1 had grade 3 fever, one at the 1 mg kg–1 level had severe fatigue defined as grade 3, and one at 8 mg kg–1 had severe bone pain of grade 3. No antibodies against MKC-454 were detected in any patients. Objective tumour responses were observed in two patients; one receiving 4 mg kg–1 had a partial response in lung metastases and the other receiving 8 mg kg–1 had a complete response in soft tissue metastases. These results indicate that MKC-454 is well tolerated and effective in patients with refractory metastatic breast cancers overexpressing the HER2 proto-oncogene. Further evaluation of this agent with 2–4 mg kg–1 weekly intravenous infusion is warranted. © 1999 Cancer Research Campaig

    Humanization and Characterization of an Anti-Human TNF-α Murine Monoclonal Antibody

    Get PDF
    A murine monoclonal antibody, m357, showing the highly neutralizing activities for human tumor necrosis factor (TNF-α) was chosen to be humanized by a variable domain resurfacing approach. The non-conserved surface residues in the framework regions of both the heavy and light chain variable regions were identified via a molecular modeling of m357 built by computer-assisted homology modeling. By replacing these critical surface residues with the human counterparts, a humanized version, h357, was generated. The humanized h357 IgG1 was then stably expressed in a mammalian cell line and the purified antibody maintained the high antigen binding affinity as compared with the parental m357 based on a soluble TNF-α neutralization bioassay. Furthermore, h357 IgG1 possesses the ability to mediate antibody-dependent cell-mediated cytotoxicity and complement dependent cytotoxicity upon binding to cells bearing the transmembrane form of TNF-α. In a mouse model of collagen antibody-induced arthritis, h357 IgG significantly inhibited disease progression by intra-peritoneal injection of 50 µg/mouse once-daily for 9 consecutive days. These results provided a basis for the development of h357 IgG as therapeutic use

    Quantitative autoradiographic evaluation of the influence of protein dose on monoclonal antibody distribution in human ovarian adenocarcinoma xenografts

    Full text link
    We studied the effect of monoclonal antibody protein dose on the uniformity of radioiodinated antibody distribution within tumor masses using quantitative autoradiography. Groups ( n = 11–13/group) of athymic nude mice with subcutaneous HTB77 human ovarian carcinoma xenografts were injected intraperitoneally with an 125 I-labeled anticarcinoma-associated antigen murine monoclonal antibody, 5G6.4, using a high or a low protein dose (500 µg or 5 µg). At 6 days post-injection the macroscopic and microscopic intratumoral biodistribution of radiolabeled antibody was determined. The degree of heterogeneity of the labeled antibody distribution within each tumor was quantified and expressed as the coefficient of variation (CV) of the activity levels in serial histological sections. Tumors from mice given the 500-µg protein doses had substantially lower CV values, 0.327±0.027, than did tumors from animals given 5-µg protein doses, 0.458±0.041, ( P = 0.0078), indicating that the higher protein dose resulted in more homogeneous distribution of radioactivity in tumors than did the lower dose. While the percentage of the injected dose reaching the tumor was comparable between groups, injecting the higher dose of protein resulted in significantly lower tumor to non-tumor uptake ratios than those obtained for the lower protein dose. These data indicate, in this system, that to achieve more uniform intratumoral antibody (and radiation for radioimmunotherapy) delivery, a relatively high protein dose must be administered. However, to obtain this increased uniformity, a substantial drop in tumor/background uptake ratios was seen. Quantitative autoradiographic evaluation of human tumor xenografts is a useful method to assess the intratumoral distribution of antibodies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46859/1/262_2005_Article_BF01789014.pd

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Biological therapy of cancer

    Full text link
    Interferons and monoclonal antibodies are among the most promising biological approaches to cancer treatment which have so far been investigated. Both natural and recombinant interferon-alpha preparations have shown activity in a number of trials in hematologic malignancies, even in previously treated patients; activity in solid tumors, however, has been limited. Unconjugated monoclonal antibodies have been safely administered in several small trials and have had therapeutic value on occasion. In spite of a number of remaining problems and questions, monoclonal antibodies and their conjugates seem likely to find a number of distinct roles in cancer treatment; elimination of micrometastases and purging of bone marrow for grafting may be among these roles.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44207/1/10549_2005_Article_BF01886730.pd

    Heterogeneity in a lymphoid tumor: coexpression of T and B surface markers

    No full text
    • …
    corecore