2,804 research outputs found
Recommended from our members
Protein fluorescence of nicotinamide nucleotide-dependent dehydrogenases
Revisiting the relativistic ejection event in XTE J1550-564 during the 1998 outburst
We revisit the discovery outburst of the X-ray transient XTE J1550−564 during which relativistic jets were observed in 1998 September, and review the radio images obtained with the Australian Long Baseline Array, and light curves obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. Based on Hi spectra, we constrain the source distance to between 3.3 and 4.9 kpc. The radio images, taken some 2 d apart, show the evolution of an ejection event. The apparent separation velocity of the two outermost ejecta is at least 1.3c and may be as large as 1.9c; when relativistic effects are taken into account, the inferred true velocity is ≥ 0.8c. The flux densities appear to peak simultaneously during the outburst, with a rather flat (although still optically thin) spectral index of −0.2
Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats
New diagnostics of the Madden-Julian Oscillation (MJO) cycle in ocean temperature and, for the first time, salinity are presented. The MJO composites are based on 4 years of gridded Argo float data from 2003 to 2006, and extend from the surface to 1,400 m depth in the tropical Indian and Pacific Oceans. The MJO surface salinity anomalies are consistent with precipitation minus evaporation fluxes in the Indian Ocean, and with anomalous zonal advection in the Pacific. The Argo sea surface temperature and thermocline depth anomalies are consistent with previous studies using other data sets. The near-surface density changes due to salinity are comparable to, and partially offset, those due to temperature, emphasising the importance of including salinity as well as temperature changes in mixed-layer modelling of tropical intraseasonal processes. The MJO-forced equatorial Kelvin wave that propagates along the thermocline in the Pacific extends down into the deep ocean, to at least 1,400 m. Coherent, statistically significant, MJO temperature and salinity anomalies are also present in the deep Indian Ocean
Able-Bodied Wild Chimpanzees Imitate a Motor Procedure Used by a Disabled Individual to Overcome Handicap
Chimpanzee culture has generated intense recent interest, fueled by the technical complexity of chimpanzee tool-using traditions; yet it is seriously doubted whether chimpanzees are able to learn motor procedures by imitation under natural conditions. Here we take advantage of an unusual chimpanzee population as a ‘natural experiment’ to identify evidence for imitative learning of this kind in wild chimpanzees. The Sonso chimpanzee community has suffered from high levels of snare injury and now has several manually disabled members. Adult male Tinka, with near-total paralysis of both hands, compensates inability to scratch his back manually by employing a distinctive technique of holding a growing liana taut while making side-to-side body movements against it. We found that seven able-bodied young chimpanzees also used this ‘liana-scratch’ technique, although they had no need to. The distribution of the liana-scratch technique was statistically associated with individuals' range overlap with Tinka and the extent of time they spent in parties with him, confirming that the technique is acquired by social learning. The motivation for able-bodied chimpanzees copying his variant is unknown, but the fact that they do is evidence that the imitative learning of motor procedures from others is a natural trait of wild chimpanzees
No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis
BACKGROUND: Mitochondrial dysfunction is an established feature of multiple sclerosis (MS). We recently described high levels of mitochondrial DNA (mtDNA) deletions within respiratory enzyme-deficient (lacking mitochondrial respiratory chain complex IV with intact complex II) neurons and choroid plexus epithelial cells in progressive MS. OBJECTIVES: The objective of this paper is to determine whether respiratory enzyme deficiency and mtDNA deletions in MS were in excess of age-related changes within muscle, which, like neurons, are post-mitotic cells that frequently harbour mtDNA deletions with ageing and in disease. METHODS: In progressive MS cases (n=17), known to harbour an excess of mtDNA deletions in the central nervous system (CNS), and controls (n=15), we studied muscle (paraspinal) and explored mitochondria in single fibres. Histochemistry, immunohistochemistry, laser microdissection, real-time polymerase chain reaction (PCR), long-range PCR and sequencing were used to resolve the single muscle fibres. RESULTS: The percentage of respiratory enzyme-deficient muscle fibres, mtDNA deletion level and percentage of muscle fibres harbouring high levels of mtDNA deletions were not significantly different in MS compared with controls. CONCLUSION: Our findings do not provide support to the existence of a diffuse mitochondrial abnormality involving multiple systems in MS. Understanding the cause(s) of the CNS mitochondrial dysfunction in progressive MS remains a research priority
Recommended from our members
Tendencies, variability and persistence of sea surface temperature anomalies
Quantifying global trends and variability in sea surface temperature (SST) is of fundamental importance to understanding changes in the Earth’s climate. One approach to observing SST is via remote sensing. Here we use a 37-year gap-filled, daily-mean analysis of satellite SSTs to quantify SST trends, variability and persistence between 1981-2018. The global mean warming trend is 0.08 K per decade globally, with 95 % of local trends being between -0.1 K and +0.35 K. Excluding perennial sea-ice regions, the mean warming trend is 0.11 K per decade. After removing the long-term trend we calculate the SST power spectra over different time periods. The maximum variance in the SST power spectra in the equatorial Pacific is 1.9 K2 on 1-5 year timescales, dominated by ENSO processes. In western boundary currents characterised by an intense mesoscale activity, SST power on sub-annual timescales dominates, with a maximum variance of 4.9 K2. Persistence timescales tend to be shorter in the summer hemisphere due to the shallower mixed layer. The median short-term persistence length is 11-14 days, found over 71-79 % of the global ocean area, with seasonal variations. The mean global correlation between monthly SST anomalies with a three-month time-lag is 0.35, with statistically significant correlations over 54.0 % of the global oceans, and notably in the northern and equatorial Pacific, and the sub-polar gyre south of Greenland. At six months, the mean global SST anomaly correlation falls to 0.18. The satellite data record enables the detailed characterisation of temporal changes in SST over almost four decades
Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking
Rationale
GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.
Objective
We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.
Methods
α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).
Results
No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.
Conclusions
Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking
Competitive Regulation of E-Cadherin JuxtaMembrane Domain Degradation by p120-Catenin Binding and Hakai-Mediated Ubiquitination
p120-Catenin binding to, and Hakai-mediated ubiquitination of the E-cadherin juxtamembrane domain (JMD) are thought to be involved in regulating E-cadherin internalization and degradation. However, the relationship between these two pathways is not understood. We targeted the E-cadherin JMD to mitochondria (WT-JMD) to isolate this domain from the plasma membrane and internalization, and to examine protein modifications and degradation. WT-JMD localized to mitochondria, but did not accumulate there except when proteasome activity was inhibited. We found WT-JMD was ubiquitinated, and arginine substitution of lysines at position 5 (K5R) and 83 (K83R) resulted in the stable accumulation of mutant JMD at mitochondria. p120-Catenin did not localize, or bind to WT-JMD even upon proteasome inhibition, whereas the K5,83R-JMD mutant bound and localized p120-catenin to mitochondria. Mutation of the p120-catenin binding site in combination with these lysine mutations inhibited p120-catenin binding, but did not decrease JMD stability or its accumulation at mitochondria. Thus, increased stability of JMD lysine mutants was due to inhibition of ubiquitination and not to p120-catenin binding. Finally, mutation of these critical lysines in full length E-cadherin had similar effects on protein stability as WT-JMD. Our results indicate that ubiquitination of the JMD inhibits p120-catenin binding, and targets E-cadherin for degradation
MHD models of Pulsar Wind Nebulae
Pulsar Wind Nebulae (PWNe) are bubbles or relativistic plasma that form when
the pulsar wind is confined by the SNR or the ISM. Recent observations have
shown a richness of emission features that has driven a renewed interest in the
theoretical modeling of these objects. In recent years a MHD paradigm has been
developed, capable of reproducing almost all of the observed properties of
PWNe, shedding new light on many old issues. Given that PWNe are perhaps the
nearest systems where processes related to relativistic dynamics can be
investigated with high accuracy, a reliable model of their behavior is
paramount for a correct understanding of high energy astrophysics in general. I
will review the present status of MHD models: what are the key ingredients,
their successes, and open questions that still need further investigation.Comment: 18 pages, 5 figures, Invited Review, Proceedings of the "ICREA
Workshop on The High-Energy Emission from Pulsars and their Systems", Sant
Cugat, Spain, April 12-16, 201
- …