1,293 research outputs found

    Competing interactions in arrested states of colloidal clays

    Full text link
    Using experiments, theory and simulations, we show that the arrested state observed in a colloidal clay at intermediate concentrations is stabilized by the screened Coulomb repulsion (Wigner glass). Dilution experiments allow us to distinguish this high-concentration disconnected state, which melts upon addition of water, from a low-concentration gel state, which does not melt. Theoretical modelling and simulations reproduce the measured Small Angle X-Ray Scattering static structure factors and confirm the long-range electrostatic nature of the arrested structure. These findings are attributed to the different timescales controlling the competing attractive and repulsive interactions.Comment: Accepted for publication in Physical Review Letter

    Liquid-like behavior of supercritical fluids

    Full text link
    The high frequency dynamics of fluid oxygen have been investigated by Inelastic X-ray Scattering. In spite of the markedly supercritical conditions (T2TcT\approx 2 T_c, P>102PcP>10^2 P_c), the sound velocity exceeds the hydrodynamic value of about 20%, a feature which is the fingerprint of liquid-like dynamics. The comparison of the present results with literature data obtained in several fluids allow us to identify the extrapolation of the liquid vapor-coexistence line in the (P/PcP/P_c, T/TcT/T_c) plane as the relevant edge between liquid- and gas-like dynamics. More interestingly, this extrapolation is very close to the non metal-metal transition in hot dense fluids, at pressure and temperature values as obtained by shock wave experiments. This result points to the existence of a connection between structural modifications and transport properties in dense fluids.Comment: 4 pages, 3 figures, accepted by Phys. Rev. Let

    Evidence of anomalous dispersion of the generalized sound velocity in glasses

    Full text link
    The dynamic structure factor, S(Q,w), of vitreous silica, has been measured by inelastic X-ray scattering in the exchanged wavevector (Q) region Q=4-16.5 nm-1 and up to energies hw=115 meV in the Stokes side. The unprecedented statistical accuracy in such an extended energy range allows to accurately determine the longitudinal current spectra, and the energies of the vibrational excitations. The simultaneous observation of two excitations in the acoustic region, and the persistence of propagating sound waves up to Q values comparable with the (pseudo-)Brillouin zone edge, allow to observe a positive dispersion in the generalized sound velocity that, around Q=5 nm-1, varies from 6500 to 9000 m/s: this phenomenon was never experimentally observed in a glass.Comment: 5 pages, 3 figures. To appear in Phys. Rev.

    What is the right theory for Anderson localization of light?

    Full text link
    Anderson localization of light is traditionally described in analogy to electrons in a random potential. Within this description the disorder strength -- and hence the localization characteristics -- depends strongly on the wavelength of the incident light. In an alternative description in analogy to sound waves in a material with spatially fluctuating elastic moduli this is not the case. Here, we report on an experimentum crucis in order to investigate the validity of the two conflicting theories using transverse-localized optical devices. We do not find any dependence of the observed localization radii on the light wavelength. We conclude that the modulus-type description is the correct one and not the potential-type one. We corroborate this by showing that in the derivation of the traditional, potential-type theory a term in the wave equation has been tacititly neglected. In our new modulus-type theory the wave equation is exact. We check the consistency of the new theory with our data using a field-theoretical approach (nonlinear sigma model)

    Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    Get PDF
    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first study analyzing the expression of target genes in marine plants living near natural CO2 vents. Our results call for contention to the general claim of seagrasses as "winners" in a high-CO2 world, based on observations near volcanic vents. Careful consideration of factors that are at play in natural vents sites other than CO2 and acidification is required. This study also constitutes a first step for using stress-related genes as indicators of environmental pressures in a changing ocean.project HighGrass "High-CO2 effects on seagrass photosynthetic ecophysiology" [PTDC/MAREST/3687/2012]; MIUR Italian flagship project RITMARE; ESF COST Action "Seagrass Productivity: from genes to ecosystem management

    An approximate model for optimizing Bernoulli columns against buckling

    Get PDF
    International audienceProposed herein is a simple but powerful method for optimization of inhomogeneous, elastically restrained columns against buckling when subjected to both compressive concentrated and distributed axial loads that include self-weight. Unlike previously published studies on the subject, we do not have to specify any prescribed geometrical variation and analysis may be readily performed on columns with any complex geometrical shape. In the proposed method, the differential equation governing the buckling of Euler columns is discretized by adopting the Hencky bar-chain model, and critical buckling loads are evaluated by seeking the lowest eigenvalue of the resulting system of algebraic equations. The discrete nature of the formulation, as well as the reduced number of parameters to be optimized, is well suited for the adopted optimization process that is based on evolutionary algorithms. We propose an optimization scheme based on a parallel genetic algorithm. A comparisori study between the obtained optimal column shape and buckling loads on homogeneous and isotropic columns with circular cross section, and the numerical and analytical solutions found in the open literature shows fast convergence, high accuracy and flexibility of the proposed method

    Phonon-like and single particle dynamics in liquid lithium

    Full text link
    The dynamic structure factor, S(Q,E), of liquid lithium (T=475 K) has been determined by inelastic x-ray scattering (IXS) in the momentum transfer region (Q = 1.4-110 nm-1). These data allow to observe how, in a simple liquid, a phonon-like collective mode evolves towards the single particle dynamics. As a function of Q, one finds: i) at low Q's, a sound mode with a positive dispersion of the sound velocity, ii) at intermediate Q's, excitations whose energy oscillates similarly to phonons in the crystal Brillouin zones, and iii) at high Q's, the S(Q,E) approaches a Gaussian shape, indicating that the single particle dynamics has been reached.Comment: 3 pages and 5 figure

    2b-RAD Genotyping of the Seagrass Cymodocea nodosa Along a Latitudinal Cline Identifies Candidate Genes for Environmental Adaptation

    Get PDF
    Plant populations distributed along broad latitudinal gradients often show patterns of clinal variation in genotype and phenotype. Differences in photoperiod and temperature cues across latitudes influence major phenological events, such as timing of flowering or seed dormancy. Here, we used an array of 4,941 SNPs derived from 2b-RAD genotyping to characterize population differentiation and levels of genetic and genotypic diversity of three populations of the seagrass Cymodocea nodosa along a latitudinal gradient extending across the Atlantic-Mediterranean boundary (i.e., Gran Canaria—Canary Islands, Faro—Portugal, and Ebro Delta—Spain). Our main goal was to search for potential outlier loci that could underlie adaptive differentiation of populations across the latitudinal distribution of the species. We hypothesized that such polymorphisms could be related to variation in photoperiod-temperature regime occurring across latitudes. The three populations were clearly differentiated and exhibited diverse levels of clonality and genetic diversity. Cymodocea nodosa from the Mediterranean displayed the highest genotypic richness, while the Portuguese population had the highest clonality values. Gran Canaria exhibited the lowest genetic diversity (as observed heterozygosity). Nine SNPs were reliably identified as outliers across the three sites by two different methods (i.e., BayeScan and pcadapt), and three SNPs could be associated to specific protein-coding genes by screening available C. nodosa transcriptomes. Two SNPs-carrying contigs encoded for transcription factors, while the other one encoded for an enzyme specifically involved in the regulation of flowering time, namely Lysine-specific histone demethylase 1 homolog 2. When analyzing biological processes enriched within the whole dataset of outlier SNPs identified by at least one method, “regulation of transcription” and “signalling” were among the most represented. Our results highlight the fundamental importance signal integration and gene-regulatory networks, as well as epigenetic regulation via DNA (de)methylation, could have for enabling adaptation of seagrass populations along environmental gradients
    corecore