14,450 research outputs found
DNA-psoralen: single-molecule experiments and first principles calculations
The authors measure the persistence and contour lengths of DNA-psoralen
complexes, as a function of psoralen concentration, for intercalated and
crosslinked complexes. In both cases, the persistence length monotonically
increases until a certain critical concentration is reached, above which it
abruptly decreases and remains approximately constant. The contour length of
the complexes exhibits no such discontinuous behavior. By fitting the relative
increase of the contour length to the neighbor exclusion model, we obtain the
exclusion number and the intrinsic intercalating constant of the psoralen-DNA
interaction. Ab initio calculations are employed in order to provide an
atomistic picture of these experimental findings.Comment: 9 pages, 4 figures in re-print format 3 pages, 4 figures in the
published versio
Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure
In this work we obtain bounds on the topological Abelian string-vortex and on
the string-cigar, by using a new measure of configurational complexity, known
as configurational entropy. In this way, the information-theoretical measure of
six-dimensional braneworlds scenarios are capable to probe situations where the
parameters responsible for the brane thickness are arbitrary. The so-called
configurational entropy (CE) selects the best value of the parameter in the
model. This is accomplished by minimizing the CE, namely, by selecting the most
appropriate parameters in the model that correspond to the most organized
system, based upon the Shannon information theory. This information-theoretical
measure of complexity provides a complementary perspective to situations where
strictly energy-based arguments are inconclusive. We show that the higher the
energy the higher the CE, what shows an important correlation between the
energy of the a localized field configuration and its associated entropic
measure.Comment: 6 pages, 7 figures, final version to appear in Phys. Lett.
Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands
The bias-dependent transport properties of short poly(G)-poly(C) A-DNA
strands attached to Au electrodes are investigated with first principles
electronic transport methods. By using the non- equilibrium Green's function
approach combined with self-interaction corrected density functional theory, we
calculate the fully self-consistent coherent I-V curve of various double-strand
polymeric DNA fragments. We show that electronic wave-function localization,
induced either by the native electrical dipole and/or by the electrostatic
disorder originating from the first few water solvation layers, drastically
suppresses the magnitude of the elastic conductance of A-DNA oligonucleotides.
We then argue that electron transport through DNA is the result of
sequence-specific short-range tunneling across a few bases combined with
general diffusive/inelastic processes.Comment: 15 pages, 13 figures, 1 tabl
Strongly coupled matter near phase transition
In the Hartree approximation of Cornwall-Jackiw-Tomboulis (CJT) formalism of
the real scalar field theory, we show that for the strongly coupled scalar
system near phase transition, the shear viscosity over entropy density is
small, however, the bulk viscosity over entropy density is large. The large
bulk viscosity is related to the highly nonconformal equation of state. It is
found that the square of the sound velocity near phase transition is much
smaller than the conformal value 1/3, and the trace anomaly at phase transition
deviates far away from 0. These results agree well with the lattice results of
the complex QCD system near phase transition.Comment: 6 pages, 2 figures, 1 table, contributed to the International
Conference on Strangeness in Quark Matter 2008, Beijing, China, 6-10 October
200
Studies of CMB structure at Dec=40. II: Analysis and cosmological interpretation
We present a detailed analysis of the cosmic microwave background structure
in the Tenerife Dec=+40 degrees data. The effect of local atmospheric
contributions on the derived fluctuation amplitude is considered, resulting in
an improved separation of the intrinsic CMB signal from noise. Our analysis
demonstrates the existence of common structure in independent data scans at 15
and 33 GHz. For the case of fluctuations described by a Gaussian
auto-correlation function, a likelihood analysis of our combined results at 15
and 33 GHz implies an intrinsic rms fluctuation level of 48^{+21}_{-15} uK on a
coherence scale of 4 degrees; the equivalent analysis for a
Harrison-Zel'dovitch model gives a power spectrum normalisation of Q_{rms-ps} =
22^{+10}_{-6} uK. The fluctuation amplitude is seen to be consistent at the 68%
confidence level with that reported for the COBE two-year data for primordial
fluctuations described by a power law model with a spectral index in the range
1.0 \le n \le 1.6. This limit favours the large scale CMB anisotropy being
dominated by scalar fluctuations rather than tensor modes from a gravitational
wave background. The large scale Tenerife and COBE results are considered in
conjunction with observational results from medium scale experiments in order
to place improved limits on the fluctuation spectral index; we find n=1.10 +/-
0.10 assuming standard CDM with H_{0}=50 kms^{-1}Mpc^{-1}.Comment: 10 pages LaTeX, including 8 PostScript figures. Accepted for
publication in MNRA
Perturbed Self-Similar Massless Scalar Field in the Spacetimes with Circular Symmetry in 2+1 Gravity
We present in this work the study of the linear perturbations of the
2+1-dimensional circularly symmetric solution, obtained in a previous work,
with kinematic self-similarity of the second kind. We have obtained an exact
solution for the perturbation equations and the possible perturbation modes. We
have shown that the background solution is a stable solution.Comment: no figure
- âŠ