34 research outputs found

    Extensive DNA End Processing by Exo1 and Sgs1 Inhibits Break-Induced Replication

    Get PDF
    Homology-dependent repair of DNA double-strand breaks (DSBs) by gene conversion involves short tracts of DNA synthesis and limited loss of heterozygosity (LOH). For DSBs that present only one end, repair occurs by invasion into a homologous sequence followed by replication to the end of the chromosome resulting in extensive LOH, a process called break-induced replication (BIR). We developed a BIR assay in Saccharomyces cerevisiae consisting of a plasmid with a telomere seeding sequence separated from sequence homologous to chromosome III by an I-SceI endonuclease recognition site. Following cleavage of the plasmid by I-SceI in vivo, de novo telomere synthesis occurs at one end of the vector, and the other end invades at the homologous sequence on chromosome III and initiates replication to the end of the chromosome to generate a stable chromosome fragment (CF). BIR was infrequent in wild-type cells due to degradation of the linearized vector. However, in the exo1Ξ” sgs1Ξ” mutant, which is defective in the 5β€²-3β€² resection of DSBs, the frequency of BIR was increased by 39-fold. Extension of the invading end of the plasmid was detected by physical analysis two hours after induction of the I-SceI endonuclease in the wild-type exo1Ξ”, sgs1Ξ”, and exo1Ξ” sgs1Ξ” mutants, but fully repaired products were only visible in the exo1Ξ” sgs1Ξ” mutant. The inhibitory effect of resection was less in a plasmid-chromosome gene conversion assay, compared to BIR, and products were detected by physical assay in the wild-type strain. The rare chromosome rearrangements due to BIR template switching at repeated sequences were increased in the exo1Ξ” sgs1Ξ” mutant, suggesting that reduced resection can decrease the fidelity of homologous recombination

    Family Influences on the Long Term Post-Disaster Recovery of Puerto Rican Youth

    Get PDF
    This study focused on characteristics of the family environment that may mediate the relationship between disaster exposure and the presence of symptoms that met DSM-IV diagnostic criteria for symptom count and duration for an internalizing disorder in children and youth. We also explored how parental history of mental health problems may moderate this meditational model. Approximately 18 months after Hurricane Georges hit Puerto Rico in 1998, participants were randomly selected based on a probability household sample using 1990 US Census block groups. Caregivers and children (N=1,886 dyads) were interviewed with the Diagnostic Interview Schedule for Children and other questionnaires in Spanish. Areas of the family environment assessed include parent-child relationship quality, parent-child involvement, parental monitoring, discipline, parents’ relationship quality and parental mental health. SEM models were estimated for parents and children, and by age group. For children (4–10 years old), parenting variables were related to internalizing psychopathology, but did not mediate the exposure-psychopathology relationship. Exposure had a direct relationship to internalizing psychopathology. For youth (11–17 years old), some parenting variables attenuated the relation between exposure and internalizing psychopathology. Family environment factors may play a mediational role in psychopathology post-disaster among youth, compared to an additive role for children. Hurricane exposure had a significant relation to family environment for families without parental history of mental health problems, but no influence for families with a parental history of mental health problems

    Competitive Repair by Naturally Dispersed Repetitive DNA during Non-Allelic Homologous Recombination

    Get PDF
    Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR–dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR–dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer

    Sgs1 and Exo1 Redundantly Inhibit Break-Induced Replication and De Novo Telomere Addition at Broken Chromosome Ends

    Get PDF
    In budding yeast, an HO endonuclease-inducible double-strand break (DSB) is efficiently repaired by several homologous recombination (HR) pathways. In contrast to gene conversion (GC), where both ends of the DSB can recombine with the same template, break-induced replication (BIR) occurs when only the centromere-proximal end of the DSB can locate homologous sequences. Whereas GC results in a small patch of new DNA synthesis, BIR leads to a nonreciprocal translocation. The requirements for completing BIR are significantly different from those of GC, but both processes require 5β€² to 3β€² resection of DSB ends to create single-stranded DNA that leads to formation of a Rad51 filament required to initiate HR. Resection proceeds by two pathways dependent on Exo1 or the BLM homolog, Sgs1. We report that Exo1 and Sgs1 each inhibit BIR but have little effect on GC, while overexpression of either protein severely inhibits BIR. In contrast, overexpression of Rad51 markedly increases the efficiency of BIR, again with little effect on GC. In sgs1Ξ” exo1Ξ” strains, where there is little 5β€² to 3β€² resection, the level of BIR is not different from either single mutant; surprisingly, there is a two-fold increase in cell viability after HO induction whereby 40% of all cells survive by formation of a new telomere within a few kb of the site of DNA cleavage. De novo telomere addition is rare in wild-type, sgs1Ξ”, or exo1Ξ” cells. In sgs1Ξ” exo1Ξ”, repair by GC is severely inhibited, but cell viaiblity remains high because of new telomere formation. These data suggest that the extensive 5β€² to 3β€² resection that occurs before the initiation of new DNA synthesis in BIR may prevent efficient maintenance of a Rad51 filament near the DSB end. The severe constraint on 5β€² to 3β€² resection, which also abrogates activation of the Mec1-dependent DNA damage checkpoint, permits an unprecedented level of new telomere addition

    Neocentromeres Form Efficiently at Multiple Possible Loci in Candida albicans

    Get PDF
    Centromeres are critically important for chromosome stability and integrity. Most eukaryotes have regional centromeres that include long tracts of repetitive DNA packaged into pericentric heterochromatin. Neocentromeres, new sites of functional kinetochore assembly, can form at ectopic loci because no DNA sequence is strictly required for assembly of a functional kinetochore. In humans, neocentromeres often arise in cells with gross chromosome rearrangements that rescue an acentric chromosome. Here, we studied the properties of centromeres in Candida albicans, the most prevalent fungal pathogen of humans, which has small regional centromeres that lack pericentric heterochromatin. We functionally delimited centromere DNA on Chromosome 5 (CEN5) and then replaced the entire region with the counter-selectable URA3 gene or other marker genes. All of the resulting cen5Ξ”::URA3 transformants stably retained both copies of Chr5, indicating that a functional neocentromere had assembled efficiently on the homolog lacking CEN5 DNA. Strains selected to maintain only the cen5Ξ”::URA3 homolog and no wild-type Chr5 homolog also grew well, indicating that neocentromere function is independent of the presence of any wild-type CEN5 DNA. Two classes of neocentromere (neoCEN) strains were distinguishable: β€œproximal neoCEN” and β€œdistal neoCEN” strains. Neocentromeres in the distal neoCEN strains formed at loci about 200–450 kb from cen5Ξ”::URA3 on either chromosome arm, as detected by massively parallel sequencing of DNA isolated by CENP-ACse4p chromatin immunoprecipitation (ChIP). In the proximal neoCEN strains, the neocentromeres formed directly adjacent to cen5Ξ”::URA3 and moved onto the URA3 DNA, resulting in silencing of its expression. Functional neocentromeres form efficiently at several possible loci that share properties of low gene density and flanking repeated DNA sequences. Subsequently, neocentromeres can move locally, which can be detected by silencing of an adjacent URA3 gene, or can relocate to entirely different regions of the chromosome. The ability to select for neocentromere formation and movement in C. albicans permits mechanistic analysis of the assembly and maintenance of a regional centromere

    Deletion of Cryptococcus neoformans AIF Ortholog Promotes Chromosome Aneuploidy and Fluconazole-Resistance in a Metacaspase-Independent Manner

    Get PDF
    Apoptosis is a form of programmed cell death critical for development and homeostasis in multicellular organisms. Apoptosis-like cell death (ALCD) has been described in several fungi, including the opportunistic human pathogen Cryptococcus neoformans. In addition, capsular polysaccharides of C. neoformans are known to induce apoptosis in host immune cells, thereby contributing to its virulence. Our goals were to characterize the apoptotic signaling cascade in C. neoformans as well as its unique features compared to the host machinery to exploit the endogenous fungal apoptotic pathways as a novel antifungal strategy in the future. The dissection of apoptotic pathways revealed that apoptosis-inducing factor (Aif1) and metacaspases (Mca1 and Mca2) are independently required for ALCD in C. neoformans. We show that the apoptotic pathways are required for cell fusion and sporulation during mating, indicating that apoptosis may occur during sexual development. Previous studies showed that antifungal drugs induce ALCD in fungi and that C. neoformans adapts to high concentrations of the antifungal fluconazole (FLC) by acquisition of aneuploidy, especially duplication of chromosome 1 (Chr1). Disruption of aif1, but not the metacaspases, stimulates the emergence of aneuploid subpopulations with Chr1 disomy that are resistant to fluconazole (FLCR) in vitro and in vivo. FLCR isolates in the aif1 background are stable in the absence of the drug, while those in the wild-type background readily revert to FLC sensitivity. We propose that apoptosis orchestrated by Aif1 might eliminate aneuploid cells from the population and defects in this pathway contribute to the selection of aneuploid FLCR subpopulations during treatment. Aneuploid clinical isolates with disomies for chromosomes other than Chr1 exhibit reduced AIF1 expression, suggesting that inactivation of Aif1 might be a novel aneuploidy-tolerating mechanism in fungi that facilitates the selection of antifungal drug resistance
    corecore