18 research outputs found

    The Changes in China's Forests: An Analysis Using the Forest Identity

    Get PDF
    Changes in forest carbon stocks are a determinant of the regional carbon budget. In the past several decades, China has experienced a pronounced increase in forest area and density. However, few comprehensive analyses have been conducted. In this study, we employed the Forest Identity concept to evaluate the changing status of China's forests over the past three decades, using national forest inventory data of five periods (1977–1981, 1984–1988, 1989–1993, 1994–1998, and 1999–2003). The results showed that forest area and growing stock density increased by 0.51% and 0.44% annually over the past three decades, while the conversion ratio of forest biomass to growing stock declined by 0.10% annually. These developments resulted in a net annual increase of 0.85% in forest carbon sequestration, which is equivalent to a net biomass carbon uptake of 43.8 Tg per year (1 Tg = 1012 g). This increase can be attributed to the national reforestation/afforestation programs, environmentally enhanced forest growth and economic development as indicated by the average gross domestic product

    Economic development and coastal ecosystem change in China

    Get PDF
    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000340593000007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Multidisciplinary SciencesSCI(E)[email protected]

    High-Resolution Remote Sensing Data as a Boundary Object to Facilitate Interdisciplinary Collaboration

    No full text
    Native forest regrowth in degraded tropical landscapes is critical for biodiversity conservation, carbon sequestration, and human livelihoods. However, social and ecological drivers of reforestation have primarily been studied in separate disciplinary frameworks and at different spatial scales. In southwestern Panama, we found that scale mismatches between satellite data used to study land cover change, forest inventory plots used to study ecological dynamics, and household survey data used to study farmer behavior were a major impediment to our research goals. We overcame the challenges posed by scale mismatches by applying high-resolution remote sensing data to facilitate interdisciplinary research. We describe how our data sources enabled us to scale up ecological field data, present our research to stakeholders, and resolve discrepancies between data at different scales. High-resolution imagery can thus facilitate boundary crossing via cross-scale research on coupled natural-human systems
    corecore